Catalog Number 26-2204

An Overview of the TRS-80 -
Model I/IlI Compiler Basic Manual

The four sections in this manual contain the information you
need to use Radio Shack’s compILER BAsIC. We suggest that
you begin by running through the steps in the first chapter of
Section 1, “Operating Compiler BASIC”

The four sections are:

1/Operating Compiler BASIC

Takes you through the steps of operating Compiler Basic from.
starting up the system to typing, debugging, compiling,
running, and saving programs. Includes alphabetical entries
on each BAsiC command.

2/Programming in RSBASIC

Shows you how to write programs using the RsBASIC ,
programming language. Includes alphabetical entries on each
BASIC keyword.

3/BEDIT

Explains how to use BEDIT to edit your BASIC source programs.

4/Programmer’s Information Section

Gives background information on the Compiler BasIC
development system, memory usage, data storage, and
assembly language subprograms. Also, gives information
on how to use the stand-alone Runtime System.

This manual complements the information in your Model I/III
Operations and TRSDOS manuals. If you need more
information on your Model I/III computer system, we refer
you to these manuals.

COPYRIGHT NOTICES

TRS-80 MODEL Il COMPILER BASIC

© ® 1981 by Ryan-McFarland Corporation

Licensed to Tandy Corporation, Fort Worth, Texas 76102.
All rights reserved.

TRS-80 MODEL I/III DISK OPERATING SYSTEM (TRSDOS)
© ® 1981 by Tandy Corporation. All rights reserved.

TRS-80 COMPILER BASIC MANUAL

© 1981 by Tandy Corporation. All rights reserved.

Reproduction or use, without express permission, of editorial or pictorial content, in
any manner, is prohibited. While every precaution has been {aken in the
preparation of this book, the publisher assumes no responsibility for errors or
omissions. Neither is any liability assumed for damages resulting from the use of
the information contained herein.

IMPORTANT NOTE FOR
MODEL /i1t COMPILER BASIC USERS
{Catalog Number 26-2204)

it is important to note that when using Compiler BASIC with a Mode! [or a
Modei 11, the minimum system requirements are:

® Two Disk Drives

@ A 48K system.

When starting up the Model | system, the Run-Time Diskette {the Compiler
BASIC system diskette) must be in Drive §. The Program Diskette must be in

Drive 1. When using Model i1}, the Program Diskette must be in Drive .

Also note that Model | will not prompt vou for the date-and time as Mode!
FH will.

Thank-Youl

i fhaek

EA DIVISION OF TANDY CORPORATION

8759129-781

Rad
| 1

How Compiler BASIC Works

The BasiC programming language must translate all your
BASIC instructions to an object code the computer

- understands. The means it uses to translate your instructions
depends on the form of BASIC you have.

The BASIC which comes with the TRS-80 Model I/111 is an
Interpreter. It interprets each instruction to object code
everytime it runs the program.

Compiler BASIC, on the other hand, translates the program
in two stages. First, it compiles the entire program to an
intermediate object code. Then, when running the program,
it translates this intermediate code to an object code.

Compiling your program to this intermediate code will give
you several advantages:

@ The program will take up much less space in memory and
on diskette.

@ No one using your program will be able to read your
“source” BASIC instructions.

Notice To Programmers

By your purchase of the software product described in this
book, you have obtained a license to duplicate TRSDOS and
Model I/III Basic only as necessary for personal use on your
Model I/III Micro-Computer.

If you intend to sell BasiC applications programs you have
written for the TRs-80 Model U111, you must follow the
procedure below to avoid violation of this license and of the
copyright laws.

The complete Radio Shack Basic Development System
(26-2204) includes the TRSDOS™ operating system, the
rsBAsIC Compiler, the RUNBASIC runtime and numerous
auxiliary files.

RsBASIC produces an intermediate code which can only be
executed by the runtime system RunsasiC. Therefore, your
compiled program will require that the user have TrRspDOSs and
RUNBASIC from Radio Shack.

Since you may not duplicate TRSDOS or RUNBASIC for resale,
you have two options for selling a copy of your own program:

A. Purchase a RUNBASIC/TRSDOS runtime system diskette
(Catalog Number 26-2208 for Model I, Catalog Number
26-2209 for Model III) from Radio Shack. Copy your compiled
program onto this diskette, and sell this diskette to your
customer. The copyright notices affixed to that diskette must
not be removed or hidden from view. For each copy of your
program you sell in this manner, you must purchase the
RUNBASIC diskette and copy your program onto it.

B. Sell your compiled program without TRsDOs and
without the BAsIC runtime. Instruct your customer to purchase
a RUNBASIC/TRSDOS runtime from Radio Shack.

The Model IIII Basic Interpreter programs are not meant
to be run under Compiler Basic. Radio Shack does not
recommend converting BASIC Interpreter programs.

Important Note to
Model Il Users

From time to time, Radio Shack may release new versions of TRSDQOS, the
TRS-80 disk operating system. Check with your local Radio Shack or the
TRS-80 Microcomputer News for notices and instructions on these
enhanced versions of TRSDOS.

If you receive a new version of TRSDOS, read the following before making

any modifications to your existing software packages (applications, lan-

guages, or system utilities):

« Do not convert your Radio Shack software packages for use with the new
version of TRSDOS unless you are instructed to do so.

- Before converting a Radio Shack supplied Model | software package to a
Model lll format, check to see if Radio Shack provides a Model 1l version
of the package. If so, you should obtain a copy of that version.

= if you're using several different software packages, press the RESET but-
ton whenever you change software.

Thank-You!

Radie fhaek

< A Division of Tandy Corporation

8759106

CHANGE OF ADDRESS

NOTE: if you move, please fill out this card and return it so that you may continue to
receive information regarding this program.

Purchase Date

Cat. No. 224
NEW ADDRESS: OLD ADDRESS:
name Name
Company Company
Address _ Address
City iy
State Zip State -

INSTRUCTIONS FOR USE

1. Register one software package per card only.
2. Complete the Software Registration portion of this form and mail it immediately.
The Catalog No. may be found by examining the upper-right corner of your diskette.

3. For convenience a change of address card has been included. Copy all information
from the Registration Card onto it prior to sending the Registration Card.

PLACE
STAMP
HERE

Computer Merchandlsmg
P.O. Box 2910
Fort Worth, Texas 76102

Atin: Software Registration

* k k kx k k kx k k k k Kk k % *k % %k %

MODEL I USERS
IMPORTANT NOTICE PLEASE READ FIRST

% % % F X X
* % ¥ Ok X X

k k £ % k% % *x * k*x kx * % *x %k *x *x * %

UPGRADE UTILITY ON TRSDOS 2.3B

The MODEL I diskette in this package contains a NEW version
of TRSDOS which is not compatible with OLD versions of
TRSDOS, see below for further details. TRSDOS 2.3B is
specially designed for use only with the below listed
packages: 1) 26-2013 SERIES I EDITOR/ASSEMBLER
2) 26-2204 BASIC Compiler, 26-2208 BASIC Runtime
3) 26-2203 COBOL Compiler, 26-2206 COBOL Runtime

OLD TRSDOS diskettes to be used under the NEW TRSDOS MUST be
UPGRADEd before use. Once UPGRADEd, a system or data
diskette becomes a NEW TRSDOS data diskette.

OLD diskettes used under NEW TRSDOS without UPGRADEing, may
cause extraneous information to be read at the end of files,
giving a false End Of File (EOF) indication. Some programs
will not function properly under these conditions.

NEW diskettes usel under OLD TRSDOS, may not access all
data and/or NEW programs may not run correctly.

If you determine that you need to use the UPGRADE utility
see page titled "TIPS ON USING THE MODEL I TRSDOS 2.3B
UPGRADE UTILITY" contained in this addendum.

NOTE: When changing from one TRSDOS to the other you must
use the RESET switch each time the diskette in drive 0
is changed.

RADIO SHACK APPLICATION PROGRAMS WHICH WERE DELIVERED ON AN
OLD TRSDOS DISKETTE SHOULD NOT BE UPGRADED.

OLD: TRSDOS 2.1, 2.2, and 2.3.

NEW: TRSDOS 2.3B.

file: A collection of information stored as one
named unit in the directcry.

program: A file which causes the computer to
perform a function.

data: Information contained in a file which is

used by a program.

system diskette: A diskette containing TRSDOS. When this
diskette is placed in drive 0 and the
RESET switch is pressed, TRSDOS will begin
to run.

data diskette: A diskette which does not contain TRSDOS.
If this diskette is placed in drive 0 and
the RESET switch is pressed, the screen
will clear and "NO SYSTEM" will be
displayed.

UPGRADE: A program contained on the TRSDOS 2.3B
diskette.

* k% %k k k k k k Kk k k *k k k kx k %k %

MODEL III USERS
IMPORTANT NOTICE PLEASE READ FIRST

* % ¥ ¥ ¥ ¥
¥ % N ¥ ¥ *

k k& k k k kx Kk k kx k *x * k% k * *x *x %

XFERSYS UTILITY ON TRSDOS 1.3

The MODEL III diskette in this package contains a NEW
version of TRSDOS which is not compatible with OLD versions
of TRSDOS, see below for further details.

T R R R N R N N T T N L N N S N T R I L L L L I N RN NN N SN NN OomIOmmmmIms

OLD TRSDOS diskettes to be used under the NEW TRSDOS MUST be
XFERSYSed before use. Once XFERSYSed, an OLD TRSDOS diskette
becomes a NEW TRSDOS diskette and should not be used with

OLD TRSDOS again. If you started with an OLD system or data

disk, the XFERSYSed diskette will be a NEW system or data
diskette respectively.

OLD diskettes used under NEW TRSDOS without XFERSYSing, may
cause extraneous information to be read at the end of files,
giving a false End Of File (EOF) indication. Some programs
will not function properly under these conditions.

NEW diskettes used under OLD TRSDOS, may not access all
data and/or NEW programs may not run correctly.

If you need to use the XFERSYS utility see the TRSDOS
section of your TRS-80 MODEL III Disk System Owner's Manual.

NOTE: When changing from one TRSDOS to the other you MUST
use the RESET switch each time the diskette in drive O
is changed. You may also XFERSYS onto a NEW data disk.
If this is done, all system files of the system disk
will be moved onto the data disk.

RADIO SHACK APPLICATION PROGRAMS WHICH WERE DELIVERED ON AN
OLD TRSDOS DISKETTE SHOULD NOT BE XFERSYSD.

OLD: TRSDOS 1.1 and 1.2.

NEW: TRSDOS 1.3.

file: A collection of information stored as one
named unit in the directory.

program: A file which causes the computer to
perform a function.

data: Information contained in a file which is

used by a program.

system diskette: A diskette containing TRSDOS. When this
diskette is placed in drive 0 and the
RESET switch is pressed, TRSDOS will begin
to run.

data diskette: A diskette which does not contain TRSDOS.
If this diskette is placed in drive 0 and
the RESET switch is pressed, the screen
will clear and "Not a SYSTEM Disk" will be
displayed.

XFERSYS: A program contained on the TRSDOS 1.3
diskette.

* % k Kk k k x k *k k k k k*k *k ¥ *k * k *k * *

OWNERS OF THE MODEL I, SERIES-I EDITOR
ASSEMBLER, BASIC Compiler, BASIC Runtime
COBOL Compiler, COBOL Runtime

* % % * X ¥ %
* X N ¥ * % *

* % kx k Kk Kk k k k k k k k %k k % %k * %k *x *

Differences between TRSDOS 2.3B and TRSDOS 2.3 are:

1. vVariable length records have been corrected, in all

2.

3.

aspects.

In most cases, your computer will not "hang up" when you
attempt use of a device which is not connected and
powered up.

The DEVICE command has been deleted.

4. The following commands have been added:

CLS
This command clears the display and puts it in the 64-
character mode.

PATCH ‘'filespec' (ADD = aaaa,FIND = bb,CHG = cc)
This command lets you make a change to a program file.
You need to specify:

‘aaaa' - a four byte hexadecimal address specifying
the memory location of the data you want to
change

'bb' - the contents of the byte you want to find

and change. You can specify the contents of
more than one byte.
'cc' - the new contents to replace 'bb'

For example:

PATCH DUMMY/CMD (ADD=4567,FIND=CD3300,CHG=CD3B00)
changes CD3300, which resides at memory location 4567
(HEX) in the file named DUMMY/CMD, to CD3B0O.

If this command gives you a STRING NOT FOUND error
message, this means that either 'bb' does not exist, or
else 'bb' crosses a sector boundary. If 'bb' crosses a
sector boundary, you must patch your file one byte at

a time. For example:

PATCH DUMMY/CMD (ADD=4568,FIND=33,CHG=3B)
replaces the contents of the second byte in the above
example.

TAPE (S=source device,D=destination device)
This command transfers Z-80 machine-language programs
from one device to the other. You must specify the
'source device' and 'destination device' using these
abbreviations:

T - Tape

D - Disk

R - RAM (Memory)
The only valid entries of this command are:

TAPE (S=T,D=D) TAPE (S=T,D=R) TAPE (S=D,D=T)
For example

TAPE (S=D,D=T)
starts a disk~to-tape transfer. TRSDOS will prompt you
for the diskette file specification and ask you to press
<ENTER> when the cassette recorder is ready for
recording.

CAUTION: When doing a tape-to-RAM transfer, do not use a
loading address below 6000 (Hex), since this would write
over TRSDOS or the tape command.

These commands have been slightly changed:

BACKUP now checks to see if the diskette which will be
your backup copy is already formatted. If it is, BACKUP
will ask you if you want to REFORMAT it.

CLOCK will no longer increment the date when the time
goes beyond 23:59:59.

COPY now works with only one-drive. For example:

COPY FILE1l:0 to FILE3:0
duplicates the contents of FILEl to a file named FILE3
on the same diskette.

KILL will now allow you to kill a protected file without
knowing its UPDATE or protection level. To kill this
kind of file, type an exclamation mark (!) at the end of
the KILL command. For example:

KILL EXAMPLE !
kills the UPDATEd or protected file named EXAMPLE.
(Note the mandatory space between the file name and the
exclamation mark.)

LIST only lists the printable ASCII characters.
PROT no longer allows you to use the UNLOCK parameter.

DIR is now in this format:

Disk Name: TRSDOS Drive: 0 04/15/81

Filename Attrb LRL #Rec #Grn $#Ext EOF
JOBFILE/RBRLD N*X0 256 1 1 1 1
TERMINAL/V1 N*X0 256 5 2 1 126
LOADX/CMD N*X0 256 5 2 1 0

**% 171 Free Granules **%*

T e e v . — o — T —— — " — — o —— o — - ———— " — . o ot ot oo sortn et oo

1. Disk name is the name which was assigned to the disk
when it was formatted.

2. File Name is the name and extension which was
assigned to the file when it was created. The password (if
any) is not shown.

3. Attributes is a four-character field:

a. the first character is either I (Invisible file)
or N (Non-invisable file)
b. the second character is S (System file) or *
(User file)
c. the third character is the password protection
status of the file:
X - the file is unprotected (no password)
A - the file has an access word but no
update word
U - the file has an update word but no
access word
B - the file has both update and access
word
d. the fourth character specifies the level of
access assigned to the access word:

0 - total access

1 - kill the file and everything listed
below

2 - rename the file and everything listed
below

3 - this designation is not used

4 - write and everything listed below

5 - read and everything listed below

6 - execute only

7 - no access

4. Number of Free Granules - how many free granules
remain on the diskette.

5. Logical Record Length - the record length which was
assigned to the file when it was created.

6. Number of Records - how many logical records have
been written.

7. Number of Granules - how many granules have been used
in that particular file.

8. Number of Extents - how many segments (contiguous
blocks of up to 32 granules) of disk space are allocated to
the file.

9. End of File (EOF) - shows the last byte number of the
file.

TIPS ON USING THE MODEL I TRSDOS 2.3B UPGRADE UTILITY

o —— — ——— "~ —————— A _— - — — —— - . - — o —] " -, ", Vo -~ — T - -~ ", - -

If you determine that you need to use the UPGRADE
utility then proceed as indicated below.

Insert your TRSDOS 2.3B system diskette in drive 0,
press the RESET switch, and when TRSDOS READY is displayed
type UPGRADE <ENTER>. Your screen will display:

TRSDOS DIRECTORY UPGRADE UTILITY

FOR CONVERSION OF TRSDOS 2.1, 2.2, OR 2.3 TO
TRSDOS 2.3B DIRECTORY FORMAT.

ONCE UPGRADE HAS BEEN EXECUTED, YOUR DISKETTE SHOULD
NOT BE USED UNDER TRSDOS 2.1, 2.2, OR 2.3 AGAIN.

DO YOU WISH TO CONTINUE (Y/N/Q)°?

This means that the directory format on your TRSDOS
2.1, 2.2, or 2.3 diskette will be converted to the TRSDOS
2.3B format. Once you type Y to continue, the screen will
display:

INSERT DISKETTE TO BE UPGRADED IN DRIVE 1.
PRESS <ENTER> WHEN READY.

Insert the diskette you want to convert in drive 1 and
press <ENTER>. After successful conversion, the screen will
display a CONVERSION COMPLETE message. If you are attempting
to convert a diskette which has already been converted, the

screen will display a DISKETTE IS ALREADY A 2.3B error
message.

TECHNICAL NOTE

For all files indicated in the directory that have an End Of
FIle (EOF) not egual to zero, UPGRADE will change the number
of records to be one less than the previous record count.
Note that in FILEl, the number of records indicated has been
changed from 10 to 9 after UPGRADE. For FILEZ the records
indicated remain the same since EQF=0,.

BEFORE UPGRADE AFTER UPGRADE
TRSDOS 2.1, 2.2, 2.3 TRSDOS 2.3B
FILEl EOF=9 10 RECORDS 9 RECORDS
FILE2 EOF=0 10 RECORDS 10 RECORDS

If the TRSDOS 2.1, 2.2, or 2.3 diskette is a system
diskette, part of the conversion process will prohibit
accidental usage under the TRSDOS 2.1, 2.2, or 2.3 by
killing the files listed below:

SYS0/SYS SYS1/S8YS SYS2/SYS
SYS3/SYS SYS4/SYS SYS5/8YS
SYS6/8YS FORMAT/CMD BACKUP/CMD
BASICR/CMD BASIC/CMD

SPECIAL NOTE FOR 26-2013 MODEL I SERIES I EDITOR/ASSEMBLER

The MODEL I diskette that contains your EDTASM package
includes TRSDOS 2.3B which is not compatible with TRSDOS
2.1, 2.2, or 2.3. Therefore, a machine language object file
created with this package file CAN NOT simply be COPYied
from TRSDOS 2.3B onto a TRSDOS 2.1, 2.2, or 2.3 diskette.

See below for instructions on how to move an object file
from TRSDOS 2.3B onto a TRSDOS 2.1, 2.2, or 2.3 diskette.

T I e e i T e e o e e e e e o o e e o e g v o e e e e e T e T T S T R W e e i T T S e T o e T e e e v e e

TIPS ON GETTING OBJECT FILES FROM TRSDOS 2.3B
ONTO TRSDOS 2.1, 2.2, OR 2.3 DISKETTES

If for example, you desire to use an assembly language
function written with TRSDOS 2.3B EDTASM as a "user's
external subroutine" under the TRSDOS 2.3 BASIC
interpreter,follow the given steps carefully:

1) Insert your TRSDOS 2.3B system diskette that contains the
EDTASM package in drive 0 and press the RESET switch.

2) Use the EDTASM package to enter and assemble a routine.
We have used the SHIFT routine given in Section 7 of your
TRSDOS & DISK BASIC Reference Manual as an example.

a) Save the source program using the command:
W SHIFT/SRC:0

b) Then assemble the source file with the command:
A SHIFT/CMD:0

c) Quit EDTASM with the command:
Q

d) At TRSDOS READY enter the command:
LOAD SHIFT/CMD:0

3) Remove your TRSDOS 2.3B diskette.

4) Insert your TRSDOS 2.3 diskette in drive 0 and press the
RESET switch.

5) At TRSDOS READY enter the command:
DUMP SHIFT/CMD:0 (START=X'7D00"' ,END=X"'7D09"',TRA=X"'7D00")

Reference Section 4 of your manual and note that X'7000°

is the lowest address that may be used as the origin of
your programs.

6) The file on this diskette, named SHIFT/CMD, may now be
used as needed under TRSDOS 2.1, 2.2, or 2.3 with the
BASIC interpreter as a user's external subroutine.

875-9119

Section 1

Operating
Compiler CAT. NO.
BASIC . 26-2204

General Information
Compiler Use, Start-Up,
Commands

Radio Mhack R

CUSTOM MANUFACTURED IN USA BY RADIO SHACK, A DIVISION OF TANDY CORP

TRS-80™

khkkhkhkhkhkhkhkhkhkhkkhkkhkhkhkkkkkkhkkkhkhkkhkhkhkhkhkhkkkhkkhhkkk

Chapter 1

* *
* *
* *
* USING COMPILER BASIC *
* *
* *

hhkkkhkkhkkhkkhkkhkhkhkhkhhkhkhkhhkhkhkkhhhhkhhkkhhkhhkkhkhkkkk

Radio fhaek

/wa
\K

TRS-80™

You may use Compiler BASIC in two ways:

1. As a Development System - to write, compile, run,
debug, and store programs, oY

2. As a Stand-Alone Runtime System - to only run your
programs. After developing a program, you might give it to
other pecople to operate by simply using the Runtime System.

This section explains how to use Compiler BASIC as a Development
System. For information on the stand-alone runtime system, see
the Programmers Information Section. Also see the appendix for
information on how to create a runtime system diskette.

We suggest you begin by going through the steps in Chapter 1.

TABLE OF CONTENTS
SECTION 1., OPERATING COMPILER BASIC

Chapter 1.

Using Compiler BASICieeeneocnsencsosns i1-1 to
Takes you through the steps of loading 1-13
and operating Compiler BASIC.

Chapter 2.

Commands ..c.coccococsasosssssncosss cesesaeess 2-1 to
Containg al pnabetical entries on each 2-36

Compiler BASIC command.

Radie fhaek

MODEL I/III COMPILER BASIC USING COMPILER BASIC

TRS-80™

INTRODUCTION

This chapter quickly runs through the mechanics of loading and
operating the Model I/IITI BASIC Compiler. We only mention
certain BASIC commands to illustrate how to operate the
Compiler. The details on each command are in the Commands
Chapter. Details on the Compiler itself are in the Programmers
Information Chapter.

OUTLINE OF CHAPTER 1
USING COMPILER BASIC

I. Starting Up Model I/III Compiler BASIC
A. Setting the Date and Time
B. Loading RSBASIC

IT. Programming with RSBASIC
A. Typing the Program into Memory
B. Executing the Program

I1TI. Using the Diskettes

A. Assigning File Specifications
. Storing a Program on Diskette
. Clearing Memory
. Loading Programs from Disk
. Storing Data Files on Diskette

Mmoo OQw

Radio fhaek

PAGE 1 - 1

MODEL I/III COMPILER BASIC USING COMPILER BASIC
TRS-80™

Inserting a diskette

Radio fhaek

PAGE 1 - 2

MODEL I/III COMPILER BASIC USING COMPILER BASIC

TRS-80™

STARTING UP MODEL I/III COMPILER BASIC

————— o ————_ " - o~ > .] ot ks etk o i o -~ ik ot

Before loading Compiler BASIC, you need to initialize the Model
I/I1I disk operating system by setting the date and time. The
operating system, called TRSDOS, is on your RSBASIC diskette and
is loaded automatically when you press the reset button.

The Model I/III Operations Manual explains how to connect and
power-up the Model I/I1I, and how to properly insert a diskette.
SETTING THE DATE AND TIME
As soon as TRSDOS is loaded, it prompts you for the date. Type
in the date using the MM/DD/YY form and press <ENTER>. For
example:

04/01/80 <ENTER>
sets the date for April 1, 1981.
Next, the system prompts you for the time. To skip this
gquestion, simply press <ENTER>. TRSDOS starts the clock at
00:00:00.

If you want to set the time, type it in using the 24-hour
HH:MM:SS form. For example:

14:30:00 <ENTER>
starts the clock at 2:30 PM.
The system returns with this message:
TRSDOS READY
At this point you may execute any TRSDOS command or load
RSBASIC.
LOADING RSBASIC
The simplest way to load RSBASIC is to type:

RSBASIC <ENTER>

Radie fhaek

PAGE 1 - 3

MODEL I/II1 COMPILER BASIC USING COMPILER BASIC
TRS-80™

After taking a few seconds to load, BASIC displays a start-up
heading like this:

TRS-80 MODEL I/III COMPILER BASIC (RSBASIC ver 2.4)

(C) 1981 BY RYAN-MCFARLAND CORP. LICENSED TO TANDY CORP.
*

You may now begin programming in BASIC.

Options for Loading RSBASIC

The complete syntax for loading RSBASIC is:

RSBASIC filespec T=nnnn, S=XXXX
'filespec' is a TRSDOS file specification
'nnnn' is a hexadecimal address representing
the top memory address accessible by BASIC
'xxxx' is a hexadecimal address representing the
size of the stack area to be used by BASIC.
'filespec',T="'nnnn', and S='xxxx' are optional

This means you have several options you may use in loading
RSBASIC:

1. You may load it with an instruction to immediately load
and execute a BASIC program. To do this type RSBASIC and the
program's file specification. For example:

TRSDOS READY
RSBASIC FILE:1

loads RSBASIC, then loads and executes the program file named
FILE from drive 1.

2. You may load it with an instruction to protect high
memory for your own object code programs. To do this type
RSBASIC followed by T=nnnn {(where nnnn is a hexadecimal number
representing the top memory address which BASIC may use). For
example:

Radie fhaek

PAGE 1 - 4

MODEL I/III COMPILER BASIC USING COMPILER BASIC

TRS-80™

TR5DOS READY
RSBASIC (T=BF00)

loads RSBASIC. BF00 (decimal 48896) is the highest address BASIC
will use.

TRSDOS READY
RSBASIC PROG/CMP (T=E000)

Loads RSBASIC and the program PROG/CMP, and immediately executes
PROG/CMP. BASIC will not be able to use any memory addresses
over E000.

3. You may load it with an instruction to set the stack
size to greater than the default stack size of 00CO0 (decimal
192) to allow increased usage of BASIC features like GOSUB and
CALL, which use more than average amounts of stack space.

TRSDOS READY
RSBASIC (S=0180)

loads RSBASIC with a stack size of 0180 (decimal 386).

TRSDOS READY
RSBASIC (T=E000, S=0180)

loads RSBASIC with a stack size of 0180 and prevents BASIC from
utilizing any memory address over EQ000.

Radie fhaek

PAGE 1 - 5

MODEL I/III COMPILER BASIC USING COMPILER BASIC
TRS-80™

PROGRAMMING WITH RSBASIC

TYPING THE PROGRAM INTO MEMORY

To type a BASIC program line into memory, type a line number
followed by a space followed by a BASIC statement. You must
press <ENTER> to signify the end of the line. This is an
example of how to type a program line:

10 PRINT "THIS IS A SAMPLE BASIC PROGRAM LINE" <ENTER>

BASIC has six commands to help you in typing and editing a
program:

1. AUTO - automatically numbers each program line

2. CHANGE - replaces one group of characters on program
lines with another.

3. DELETE - deletes one or more program lines

4. DUPLICATE - duplicates one or more of your program lines
in a different part of your program.

5. RENUMBER - renumbers your program.

6. LIST - lists your program.

To use a BASIC command, type the command and then press <ENTER>.
For example:

LIST <ENTER>
Lists all the program lines you have typed.

Some commands require that you include parameters as part of the
command. For example:

CHANGE 10/LINE/

changes line 10 by deleting the word LINE. The parameters are
10 and LINE. '

The Model I/III keyboard has certain special keys which are
helpful in typing program lines and commands:

Radie fhaek

PAGE 1 - 6

MODEL I/III COMPILER BASIC USING COMPILER BASIC
TRS-80™

<ENTER> Signifies end of line.

shift <~ Erases the current line. Use this
when you want to correct the entire
line.

You may want to use BEDIT to edit your program. The section on
BEDIT explains how to do this.

EXECUTING THE PROGRAM

The BASIC Compiler only executes programs which have been
compiled into object code. If you are executing a particular
BASIC program for the first time, there will be a slight delay
before that program is executed in order for BASIC to compile

the program.

The BASIC command for executing a program is RUN. To execute
this program:

10 PRINT "THIS IS A SAMPLE BASIC PROGRAM"
20 GOTO 10

Type the RUN command:

RUN <ENTER>
BASIC compiles and then executes the program. While the program
is executing, the Computer is under control of the program.

These are the two special keys you may use to interrupt
execution of the program:

Radio fhaek

PAGE 1 -~ 7

MODEL I/III COMPILER BASIC USING COMPILER BASIC

TRS-80™

Note: RUN does not initialize variable memory during the
compiling process. If you are Running the same program a number
of times, the program will start each time with the same values
it had in variable memory the last time it was Run.

Debugging the Program

RSBASIC has four commands to help in debugging a program:

1. TRACE - sets up a tracer which displays each line number
as it is being executed.
2. BREAK - sets breakpoints in the program which break

program execution.
3. STEP - executes a certain number of lines in the program.
4. GO -~ continues program execution at the next executable

statement.

These commands are detailed in the Commands section.

Radie fhaek

PAGE 1 - 8

MODEL I/III COMPILER BASIC USING COMPILER BASIC

TRS-80™

USING THE DISKETTES

You may use diskettes to store any programs or data files you
have created. To store data on a diskette, the write-protect
notch on the diskette must be uncovered. Cover the notch to
write-protect your valuable diskettes.

Label Leave Uncovered Cover for
to allow Disk Writes ‘Write-Protection

Sector Hole Jacket Read/Write
Notch

Before using a diskette for storage, make sure the diskette
which you want to use is properly inserted. Never insert or
remove the diskette while reading or writing to it. This might
destroy the contents of the diskette.

Radio fhaek

PAGE 1 - 9

MODEL I/III COMPILER BASIC USING COMPILER BASIC

TRS-80™

ASSIGNING FILE SPECIFICATIONS

Anything you store on diskette must be stored as a disk file
with a TRSDOS file specification. Afterwards, you may load the
program by specifying the file name you gave to the file when
you stored it.

The complete syntax for a file specification is:

filename/ext.password:d
*filename' is any name up to seven characters
beginning with a letter.
'/ext' is an optional extension to the filename
consisting of up to three characters.
'.password' is an optional password with up to
eight characters.
':d' is an optional drive specification {(0,1,2, or 3).
You may use this if you have a multi-drive system
to specify which disk drive you want to use in
saving and loading the program.

Only ffilename'® is essential. Both '/ext' (extension) and
'.password' are optional extensions which you may add to the
filename. ':d' is also optional. If you have a multi-drive
system, it specifies which drive you are using for storage.

Examples of file specifications:

BOOK/BAS .ABCDE:2
The filename is BOOK, the extension to the filename is BAS, the
password is ABCDE. The diskette in drive number 2 will be used
in saving or loading the program.

PROGRAM

The filename is PROGRAM. There is no extension, password, or
drive specification. Since there is no drive specification,
BASIC will use the first available drive beginning with drive 0
(the built-in drive).

ACCOUNT1/CMP:1

Radie Sfhaek

PAGE 1 ~ 10

MODEL I/III COMPILER BASIC USING COMPILER BASIC
TRS-80™

The filename is ACCOUNT1l. The extension is CMP. The diskette
in drive number 1 will be used in saving or loading the program.

PAYROLL.SECRET

The filename is PAYROLL. The password is SECRET. There is no
extension to the filename and no drive specification.

Note: For more information on TRSDOS file specifications see
your Model I/III Disk Operating System Manual.

STORING A PROGRAM ON DISKETTE

RSBASIC has two commands for storing a program on diskette: SAVE
and COMPILE. The SAVE commands stores the program in its
existing BASIC format. COMPILE compiles the program to object
code and saves it as an object code program.

Saving a Program:

To SAVE a program which is currently in memory, simply type the
SAVE command followed by the file specification you are
assigning to the program. For example, to save this program
(once it has been typed into memory):

10 PRINT "THIS IS AN EXAMPLE OF A BASIC PROGRAM"
20 GOTO 10 :

You may type:
SAVE EXAMPLE/BAS <ENTER>

This gives the program the file name EXAMPLE, with the extension
BAS, and saves it on the diskette in drive 0 -- the built in
drive. (If you have a multi-drive system, RSBASIC will save it
on the first diskette available,beginning its search with the
diskette in drive 0).

A Note of Caution

If you save a file with the same file specification as an
existing file, the contents of the existing file will be
destroyed. For instance, if you save another program under the
name EXAMPLE/BAS, the program file you just created above will
be destroyed in order to make room for the new file.

Radio fhaek

PAGE 1 - 11

MODEL I/III COMPILER BASIC USING COMPILER BASIC
TRS-80™

For this reason, ycu might want to check the diskette's
directory, before you go into RSBASIC, to see what files are
already on the diskette.

Compiling a Program

Now that the program above is saved as a BASIC program, you may
compile it to an object code disk file. Type:

COMPILE EXAMPLE/BAS, EXAMPLE/CMP <ENTER>

This compiles the program disk file named EXAMPLE/BAS and stores
it on diskette as an object code file with the name EXAMPLE/CMP.
The original source program is left unchanged. You should be
sure to save it in case you ever need to modify the program (see
below).

There are several reasons for compiling a long program:

1. The compiled program takes up less room, both on
diskette and in memory.

2. Once you have a program in final form, so that further
editing and debugging is not required, you don't need all the
overhead of the RSBASIC Development System. Instead, you may
copy the compiled program onto a diskette containing only the
RUNBASIC program. This leaves maximum disk space available for
your data files.

You cannot edit, list or otherwise modify a compiled program.

If you ever need to modify it, you simply edit the original
source program and re-compile it.

CLEARING MEMORY

Once programs are saved on diskette, you will probably want to
clear the Computer's memory. BASIC has two commands for this:

1. NEW - erases all BASIC programs from memory but keeps
compiled object code programs in mMemory.

2. CLEAR - erases all BASIC and compiled programs from
memory, undefining all variables.

For example, to erase all programs from memory, type:

CLEAR <ENTER>

Radio fhaek

PAGE 1 - 12

MODEL I/III COMPILER BASIC USING COMPILER BASIC

TRS-80™

LOADING PROGRAMS FROM DISK

BASIC has different commands for loading BASIC and Compiled
programs from diskette.

Loading a BASIC Program

The OLD command loads a BASIC program from diskette. For
example:

OLD EXAMPLE/BAS

Loads the program from diskette named EXAMPLE/BAS, which was
stored above with the SAVE command. Once the program is loaded,
you may execute it with the RUN command.

Since memory is cleared everytime you OLD a program, BASIC
of fers two commands to use in loading more than one BASIC
program: APPEND and MERGE.

Loading a Compiled Program

——— o — - — - —— —— —— " S o i

The LOAD command loads Compiled programs from diskette. For
example:

LOAD EXAMPLE/CMP <ENTER>

Loads from diskette the program named EXAMPLE/CMP, which was
stored above with the COMPILE command. Once loaded, the program
may be executed with RUN.

Unlike OLD, LOAD does not clear memory when it loads a program.
Therefore, you may load a series of Compiled programs into
memory .

STORING DATA FILES ON DISKETTES

To store data files on diskette, see the chapter on Data Files.

Radio fhaek

PAGE 1 - 13

Programming j —
with RSBASIC RE =D

Information on writing
a program with RSBASIC

Radio Phack R

CUSTOM MANUFACTURED IN USA BY RADIO SHACK, A DIVISION OF TANDY CORP

TRS-80™

khkkhkkhkhkhkkhkkkkhhkhkkkhhkkhhkhkhkkkhkhkkhkkhkhkhkhhkkkkkhkkk

Chapter 2

* *
* *
* *
* COMMANDS *
% *
* *

kkkhkhkkdhkhkdhohhbdrddhrohbdhkrhhhhhkhkhkhhkhhhhihhkhkkx

Radio fhaek

MODEL I/III COMPILER BASIC COMMANDS
TRS-80™

INTRODUCTION

Compiler BASIC is made up of commands. These commands instruct
it to do something immediately.

In this chapter, there are alphabetical entries for each
command. The format for each command is explained on the next
two pages. On the following page is a brief introduction to
commands.

OUTLINE FOR CHAPTER 2

COMMANDS
I. Format for the Command Entries
II. Introduction to Commands

ITI. Alphabetical Entries for each Command

Radio fhaek

PAGE 2 -1

MODEL I/III COMPILER BASIC COMMANDS
TRS-80™

FORMAT FOR COMMAND ENTRIES

—————_— -~ "t~ o o o1 " -~ o o — "

1. The first line is the command itself. The second line
briefly describes what it does.

2. The information in the gray box is the syntax for the
command. The first line shows the format to use in typing the
command. This format line always contains:

a. the command itself
and may also contain:

b. parameters

c. options
If the syntax contains parameters and options, the next lines
define them. A parameter enclosed in single quotes indicates
that you must specify its value. 1In the syntax illustrated

here, you must specify 'startline' and 'endline', if you choose
to use these parameters.

3. This paragraph explains how to use the command.

4. These examples illustrate how the command might be used.

Radio Shaek

PAGE 2 - 2

MODEL I/III COMPILER BASIC COMMANDS

TRS-80™
-—- COMMAND --
LIST (1)

Display Program Lines

The LIST command gets the Computer to display a program line or
a group of program lines that are currently in memory. If you
do not specify any line numbers with the LIST command, it will
list all the lines. You can use the PRT option to cause the
listing to be printed on the line printer, but if the 'string'
option is used, the 'A' option must also be used.

(3)

You may specify a certain string you would like listed by
putting it between any two non-numeric delimiting characters

except " - " or .

Examples

(4)
Displays the entire program. To stop the automatic scrolling,
press <shift @>. This will freeze the display. Press <shift @>
again to continue the listing.

LIST 50

Radio fhaek

PAGE 2 - 3

MODEL I/III COMPILER BASIC COMMANDS
TRS-80™

INTRODUCTION TO COMMANDS

A command instructs the Computer to immediately do something.
For example:

*LIST <ENTER>

instructs the computer to immediately display all program lines
currently in memory. A command may not be part of the program.

All BASIC commands may be abbreviated by the first two letters
in the command. For example, LIST may be abbreviated by:

*LI <ENTER>

You may specify certain parameters for some of these commands.
For example:

*LIST 50-80

instructs the computer to immediately list lines 50 through 80.
The parameter is 50-80.

When typing a command with a parameter, there must be a space or
a comma after the command. This, for example would produce an
error:

*LIST50-80
A few of the commands also include options:
*LIST 50-80 (PRT)
lists lines 50-80 on the line printer. The option is (PRT).

Options may always be omitted from the command if you don't want
to use them.

Radie fhaek

PAGE 2 - 4

MODEL I/III COMPILER BASIC COMMANDS

TRS-80™

-- COMMAND -—-

APPEND
Append Two Programs

APPEND joins a program from disk to the resident program. The
appended disk program is renumbered to follow the resident
program. Its first renumbered line is computed by adding ten to
the last line number of the resident program. Ten is added to
each successive line.

While the program is being appended, you may stop this process
by pressing <BREAK>. The lines already Appended will stay in
your resident file, so if you <BREAK> in on the APPEND command,
be sure to Delete those added lines if you do not want them in
the resident file.

Only source programs can be appended. You can not use APPEND to
append an object program from disk which was created with the
COMPILE command.

Resident Program Disk Program

Radie fhaek

PAGE 2 - 5

MODEL I/III COMPILER BASIC COMMANDS

TRS-80™

Examples

APPEND PART2/BAS:1

This loads the program PART2/BAS from drive 1. It is renumbered
to follow the resident program.

APPEND PROG2

PROG2 is appended to the resident program. Since no drive is
specified, BASIC will begin searching for it in drive 0.

AP GRAPH/SUB

The subprogram GRAPH/SUB is appended to the main program in
resident memory.

Radio fhaek

PAGE 2 -~ 6

MODEL I/III COMPILER BASIC COMMANDS
TRS-80™

-=~COMMAND --

AUTO
Number Lines Automatically

AUTO startline, increment

‘startline’ is a line number specifying the first
line number to be used.

"increment ' is a number specifying the increment
to be used between lines. If increment
is omitted, 10 is used.

If both 'startline' and 'increment' are omitted,
startline will be the last line plus 10 and
increment will be 10.

The AUTO command helps you type program lines faster by
automatically numbering each line. To use it, type AUTO, then
type the number you want as your first automatic line number
(startline), and then, finally, type the number of lines you
want between each program line (increment).

After you type this command and press <ENTER>, BASIC will supply
you with the first line number. All you have to do is type in
your program statement and press <ENTER>. BASIC will then
supply the next line number.

To turn off AUTO, press <ENTER> after AUTO displays a line
number. If AUTO supplies you with a line number that has an
asterisk beside it, this means you have already used this
program line. Press <ENTER> if you do not want to change the

line.

Examples

AUTO

If you have not typed any program lines yet, this will start
automatic line numbering with line 10. If you have typed any
program lines, automatic line numbering will start at 10 plus
the last program line. This command increments each line number

Radie fhaek

PAGE 2 ~ 7

MODEL I/III COMPILER BASIC COMMANDS

TRS-80™

by 10.
AUTO 100

starts numbering with 100, using increments of 10 between line
numbers.

AUTO 1000, 100

starts numbering with 1000, using increments of 100 between line
numbers.

AU 5

starts numbering with 5 using increments of 10 between line
numbers.

Radie fhaek

PAGE 2 - 8

MODEL I/III COMPILER BASIC COMMANDS

TRS-80™

-= COMMAND --

BREAK
Set or Remove Program Breakpoints

BREAK sets a certain line or series of lines as a breakpoint in
the program. When BASIC encounters this line it will stop
executing the program and return to the command mode. This will
happen before the breakpoint line is executed. Use the GO
command to continue program execution.

You can set more than one breakpoint. To clear all the
breakpoints, use BREAK without any line numbers.

Examples

LR ———

BREAK 120

When the program is run, BASIC will stop execution and enter the
command mode immediately before line 120.

BREAK 200, 300, 400

This sets lines 200, 300, and 400 as breakpoints. BASIC will
stop program execution when it encounters any of these lines.
The GO command continues program execution to the next
breakpoint or to the end of the program.

BR

This clears all the breakpoints. The program will execute
normally.

Radio fhaek

PAGE 2 - 9

MODEL I/ITII COMPILER BASIC COMMANDS
TRS-80™

-~ COMMAND --—

CHANGE
Change Program Lines

CHANGE edits program lines by replacing the oldstring with the
newstring. CHANGE, of course, can only be used on source
programs which are in their original BASIC form.

Examples

o s ey e s it v i

CHANGE 100-200/PRINT/LPRINT

The first occurrence of "PRINT" in all lines from 100 to 200 are
changed to °"LPRINT". Notice that since the A option is not
used, only the first occurrence is changed. In this example,
slashes are used as delimiters, although any other character
besides the hyphen could have been used.

CHANGE, TAB(10) ,TAB(5),A

Bvery occurrence of "TAB(1l0)" is replaced by "TAB(5)" in all of
the lines. Commas are used here as delimiters.

CHANGE 500-1000/REM/

The first occurrence of "REM" in all lines from 500 to 1000 is .

B

PAGE 2 - 10

MODEL I/III COMPILER BASIC COMMANDS

TRS-80™

changed to the null string; i.e., deleted.
CH 100/J0HN ANDERSON/JAMES KNIGHT

Changes the first occurrence of "JOHN ANDERSON" in line 100 to
"JAMES KNIGHT".

Radio fhaek

PAGE 2 - 11

MODEL I/III COMPILER BASIC COMMANDS
TRS-80™

~~ COMMAND --

CLEAR
Clear All Programs from Memory

When CLEAR is used, all programs are deleted from memory, all
variables are undefined, and the system is returned to its
initial state. Unlike NEW, CLEAR will also delete compiled
obiject programs from memory.

Example

P

CLEAR

All programs presently in memory are cleared. All variables are
undefined.

Radie fhaek

PAGE 2 - 12

MODEL I/III COMPILER BASIC COMMANDS

TRS-80™

-= COMMAND --

COMPILE
Compile BASIC Program

COMPILE translates and saves a BASIC program on disk as a
pseudo-code program. Once a program is compiled, it is no
longer a BASIC program. It may not be changed.

For this reason, it is advisable to keep a disk copy of your
BASIC source program file until you are sure that you will not
want to revise it any more.

There are several advantages to having a compiled disk copy of
your BASIC program:

1. The compiled program takes up less room, both on
diskette and in memory.

2. If you will be using the stand-alone Runtime System
(described in the Programmers Information Section) to run your
program, the program must be compiled.

Radio Shaek

PAGE 2 - 13

MODEL I/III COMPILER BASIC COMMANDS
TRS-80™

To compile a BASIC program, follow this procedure:

1. use the SAVE command to save your BASIC source program

file on disk. Then you may ...
2. use the COMPILE command to create an object code program

file on disk from the BASIC source program file.

If the file name you assign to the compiled program already
exists, the existing file's contents will be wiped out. It will

be replaced by your program.
COMPILE can be used with four options:

A. LIST generates a listing of the program containing the
relative memory location of every statement. 1In the listing
below:

#COMPILE DEMO/BAS. DEMO/0OBJ (LIST)

gl 18 REM #¥% SAMPLE PROGRAM TO COMPILE *xx
ridrelnlv] 28 DIM A(S)

b 38 FOR I =1 TO 5

apis 4 ACIY = 1 + 18

alrs Y 5@ NEXT I

BazD 60 B$ = "THIS IS5 A SCALAR VARIARLE"

Bazz 8 Ch o= 4

2837 80 D = 5,234

FINAL SUMMARY
142 (BOBE) BYTES OF PROGRAM
32 (@14C) BYTES OF LOCAL DATA
8 SOURCE LINES
8 SOURCE STATEMENTS
®#%% COMPILATION COMPLETE *x#%
*

1. the source program is displayed

2. the relative memory location of each statement is
displayed in hexadecimal notation. For instance, if the program
originates at memory location hex 4000, the code for the
statement in line 40 would begin at location hex 40l1A.

3. the final summary displays that the entire program uses
142 bytes of memory. The variables in the program use 332

bytes.

Radio fhaek

PAGE 2 - 14

MODEL I/III COMPILER BASIC COMMANDS

o

TRS-80™

B. MAP shows the hexadecimal memory location of the
variables in the program. In the example below:

#COMPILE DEMO/BAE.s DEMO/OBS (MaAP)
SYMBOLIC MEMORY MaAP

SCALARS

Rpa7a B STRING*Z35 @Al C INTEGER
BBAZ D REAL. 208E I REAL
ARRAYS ,

Ba7o A(S) REAL

*

the program contains four scalars (simple variables) and one
array variable. 1In this example B is a string variable
containing 255 bytes. It is stored beginning at location hex
0078. A is an array of real numbers containing five elements
beginning at location hex 0070.

C. XREF generates a cross reference listing. Each variable
‘I' is cross referenced with all the line numbers which referenced
it. In the example below:

*COMPILE DEMO/BASs DEMO/OBJ (XREF)
CROBS REFERENCE LISTING

SCALARS

e &0

C 7@

D 80

I 3@ 4@ 4@ 50
ARRAYE

A 28 48

*

the variable I is referenced on lines 30, 50, and twice on line
40.

D. PRT causes any of the above listings to be listed on the
line printer.

@ .
Radio fhaek

PAGE 2 - 15

MODEL I/III COMPILER BASIC COMMANDS

TRS-80™

E. PRT = 'listing file'. This causes the listing to be saved
in the specified file. This option must be used in conjunction
with LIST, MAP, or XREF. For example:

COMPILE FILE/BAS, FILE/OBJ (LIST, PRT=FILE/LST)
creates a listing file containing a list of FILE.
COMPILE FILE/BAS, FILE/OBJ (MAP, PRT=FILE/LST)
creates a listing file containing a map of FILE.
To print the listing file, you must use a special program named

LIST/OBJ, which is on your Compiler BASIC diskette. Instructions
on how to use it is in the Appendix "LIST and SAMPLE Programs".

Examples

- —— o -~ -

COMPILE BILLING/BAS:0, BILLING/CMP:1

The program BILLING/BAS in drive 0 is compiled and saved as a
pseudo-code program named BILLING/CMP on the disk in drive 1.

COMPILE BASIC, OBJECT

The program BASIC is compiled and saved as a pseudo-code program
named OBJECT.

COMPILE PAYROLL/BAS, PAYROLL/CMP (LIST, PRT)
The source program PAYROLL/BAS is compiled and saved on disk as
the pseudo-code program PAYROLL/CMP. A listing showing relative
memory locations is printed on the line printer.

CO ENTRY/BAS, ENTRY/CMP (MAP, XREF)

BASIC compiles this file and displays a memory map and a cross
reference listing.

Radie Shaek

PAGE 2 - 16

MODEL I/IIXI COMPILER BASIC COMMANDS

TRS-80™

== COMMAND --

DELETE
Erase Program Lines from Memory

DELETE removes one or more program lines from memory. Another
way to delete one program line is to simply type the line number
and press <ENTER>.

Examples

- ——— — —

DELETE 70

Erases line 70 from memory. If there is no line 70, you will
get an error message.

DE 50-110
Erases lines 50 through 110, inclusive.
70

Erases line 70.

Radie fhaek

PAGE 2 - 17

MODEL I/III COMPILER BASIC COMMANDS
TRS-80™

-- COMMAND --

DISPLAY
Digplay Variable Contents

This command displays the contents of variables in the resident
source program. To display the contents of a subprogram's
variables, you must specify the name of the subprogram.

All variables are undefined until the program has been compiled.
Therefore, you must compile the program first by executing it
before using the DISPLAY command.

Examples

————— —- - - -

DISPLAY A

Displays the contents of variable A in main memory.
DISPLAY A,BS

Displays the contents of variables A and B$ in main memory.
DI SUBPROG; X

Displays the contents of variable X in the subprogram named
SUBPROG.

DI SUBPROG; X, Y

Displays the contents of variable X in SUBPROG and variable Y in
the main program or subprogram being executed.

Radie fhaek

PAGE 2 ~- 18

MODEL I/III COMPILER BASIC COMMANDS
TRS-80™

~= COMMAND --

DUPLICATE
Duplicate Program Statements

DUPLICATE copies existing program statements to another area of
the program. The duplicated program statements begin at 1 + the
current program line number you specify. Each successive line
number is incremented by one. DUPLICATE does not change any of
the existing program statements.

If BASIC must wipe out an existing program statement to
duplicate a statement in the area of the program that you
specify, it will give you an error message.

As with all editing commands, this command may not be used on a
compiled object code program.

Examples

——— o - -

DUPLICATE 100-150, 300

The statements in line numbers 100-150 are copied. The
duplicated statements appear on line numbers 301, 302, with each
additional line number incrementing by 1 until all the
statements are copied.

DU 100, 50

The statement on line 100 is copied and appears on line 51.

Radie fhaek

PAGE 2 - 19

MODEL I/III COMPILER BASIC COMMANDS

TRS-80™

~- COMMAND -~

GO
Start or Continue Program Execution

GO continues execution of the program after a breakpoint has
been encountered. (See BREAK and STEP for information on how to
set the break program execution). The GO command can also be
used at the beginning of a program to start program execution.

Example

Starts or continues executing the program.

Radio fhaek

PAGE 2 - 20

MODEL I/III COMPILER BASIC COMMANDS

TRS-80™

KILL

Delete File from Disk

-- COMMAND --

KILL deletes the file

you specify from the diskette directory.

You may Kill a file you will not use again to make room for

storing another file.

If you do not specify
BASIC will search for
and delete it.

Make sure that you do

the OPEN statement to
file.

Examples

KILL FILE/BAS

deletes FILE/BAS from
contains it.

KILL DATA:2

deletes DATA from the

a disk drive in the file specification,
the first drive that contains the file,

not Kill an open file. If you have used
open a file, close it before Killing the

the diskette in the first drive that

diskette in drive 2 only.

Radie fhaek

PAGE 2 - 21

MODEL I/III COMPILER BASIC ' COMMANDS

TRS-80™

== COMMAND --

LIST
Display Program Lines

The LIST command gets the Computer to display a program line or
a group of program lines that are currently in memory. If you
do not specify any line numbers with the LIST command, it will
list all the-lines. You can use the PRT option to cause the
listing to be printed on the line printer, but if the ‘string’
option is used, the 'A' option must also be used.

You may specify a certain string you would like listed by
putting it between any two non-numeric delimiting characters

" "

except - "
Examples

Displays the entire program. To stop the automatic scrolling,
press <shift @>. This will freeze the display. Press <shift &8>
again to continue the listing.

LIST 50

Radie fhaek

PAGE 2 -~ 22

MODEL I/III COMPILER BASIC COMMANDS

TRS-80™

Displays line 50
LIST 50-85

Displays lines 50 through 85, inclusively.
LIST 50 (PRT)

Prints line 50 on the line printer.
LIST 50-85 (PRT)

Prints lines 50 through 85, inclusively, on the line printer.
LIST "PRINT" A

Lists all statements which contain the word PRINT
LI /INSERT/

Lists the first statement which contains the word "INSERT".
LI 50-80/INSERT/A (PRT)

Lists all statements between line 50 and line 80, inclusively,
which contain the word INSERT, on the line printer.

LI 50-80/INSERT/ (PRT)

Will cause a syntax error.

Radie fhaek

PAGE 2 - 23

MODEL I/IITI COMPILER BASIC COMMANDS

TRS-80™
-~ COMMAND --

LOAD
Load Compiled BASIC Programs

The LOAD command is used to load compiled programs, which were
stored on disk using the COMPILE command, into memory. It will
only load object code programs. Use OLD to load BASIC source
programs from disk which were stored with the SAVE command.

LOAD can be used to load main programs or subprograms. Since
LOAD does not clear resident programs, more than one program can
be loaded before executing them. The loading process links the
programs together.

Examples

o s - -

LOAD PROGl/CMP:2
This loads PROG1/CMP from drive 2.
LOAD PROG1l/CMP
Since no drive specification is included in this command, BASIC
gill begin searching for this program file, starting with drive
LO SUBPROG/CMP:1

BASIC loads this subprogram from drive 1.

Radie fhaek

PAGE 2 - 24

MODEL I/III COMPILER BASIC COMMANDS
TRS-80™

~- COMMAND --

MERGE

Merge Disk Program with Resident Program

You can use the MERGE command to merge two BASIC source programs
into one. MERGE takes a BASIC source program from disk and
merges it with the BASIC program you presently have resident in
memory .

Both programs must be BASIC source programs. You may not Merge
compiled programs.

The program lines from the disk program are merged into the
resident program. For an example of how this works, say the
disk program contains line numbers 75, 85, and 90. The main
program contains lines 70, 80, and 100. When MERGE is used on
the two programs, the new program will be numbered 70, 75, 80,
85, 90, 100.

If the line numbers on the disk program coincide with the
resident program, the resident lines will be replaced by the
disk program. For example, if the disk program is numbered 5,
10, and 20, and the resident program is numbered 10, 20, and 30,
the Merged program will be numbered 5, 10, 20, 30. Lines 10 and
20 of the new program will be identical to lines 10 and 20 on
the disk program.

MERGE closes all files and deletes all variables.

Radie Shaek

PAGE 2 - 25

MODEL I/III COMPILER BASIC COMMANDS
TRS-80™

Resident Program Disk Program Merged Program

10

20

30

Examples

" > - -

MERGE PROG -

This merges the BASIC source program on disk named PROG with
whatever BASIC program is resident in memory.

ME PROG/BAS:1

This merges PROG/BAS from the disk drive number 1 with the BASIC
program resident in RAM.

Radio fhaek

PAGE 2 - 26

MODEL I/III COMPILER BASIC COMMANDS
TRS-80™

~—~ COMMAND --—

NEW
Erase BASIC Program from Memory

NEW erases an entire BASIC source program from memory.

NEW does not erase a compiled program which was loaded with the
LOAD command.* Use CLEAR to erase all programs from memory.

*NEW will erase a compiled program which was loaded with the RUN
command .

Example

NEW can be very helpful when you want to erase your main BASIC
program, but would like to keep vour compiled subprograms in
memory to use with your next BASIC program. By executing the
command:

NEW

Your majn BASIC program is erased from memory, but all object
programs remain. You may now load or type in another BASIC
program to use with your compiled subprograms.

Radio fhaek

PAGE 2 - 27

MODEL I/III COMPILER BASIC COMMANDS
TRS-80™

== COMMAND -—-

OLD
Load BASIC Source Program

The OLD command loads a BASIC source program, saved on disk,
into RAM. OLD will only load BASIC source programs. Use LOAD
to load a compiled program.

Since OLD clears all resident BASIC programs before loading a
program, only one BASIC program may be locaded into memory with
this command. To get other BASIC programs into memory, use
MERGE or APPEND.

Examples

o o — -

OLD PROG/BAS:2
Loads PROG/BAS into RAM from drive 2.
OL PROG/BRaS

Loads PROG/BAS into RAM. Since no drive specification is
included, BASIC will begin searching for it in drive 0.

Radio fhaek

PAGE 2 ~ 28

MODEL I/III COMPILER BASIC COMMANDS
TRS-80™

—-—- COMMAND -~

RENUMBER
Renumber Program

RENUMBER changes all the line numbers in your program. It also
changes all line number references appearing after GOTO, GOSUB,
THEN, ELSE, ON...GOTO, ON...GOSUB, and ON ERROR GOTO.

Examples

PR N e ——

RENUMBER

Renumbers the entire resident program. The first new line
number is 10 and each line is incremented by 10.

RENUMBER 6000, 100

Renumbers the program. The first new line number is 6000 and
each line is incremented by 100.

RE 10000

Renumbers the program. The first new line number is 10000 and
each line is incremented by 10.

Radio fhaek

PAGE 2 - 29

MODEL I/III COMPILER BASIC COMMANDS
TRS-80™

-— COMMAND -~

RUN
Execute Program

RUN is the command that executes your program. RUN compiles, if
necessary, and executes the program that is in resident memory.
If the program is in the form of a BASIC source program, there
will be a short delay while RUN is complllng the program before
running it.

If you include a file specification, BASIC will Load or 0Old the
program from disk and execute it. You may have BASIC Run either
a BASIC source program or a compiled program. If you use RUN to
run a compiled program, be sure to first clear any BASIC
programs you have in resident memory.
RUN
Executes the program in resident memory.

RUN PROGRAM/CMP:?2

Loads the compiled program PROGRAM/CMP from drive 2 and executes
it.

RUN PROGRAM/BAS
Loads the BASIC source program PROGRAM/BAS and executes it.
RU PROGRAM

Loads the program PROGRAM and executes it.

Radie fhaek

PAGE 2 - 30

MODEL I/III COMPILER BASIC COMMANDS

TRS-80™

-- COMMAND -~

SAVE
Save BASIC Source Program on Disk

BASIC has two commands for storing programs on a disk file: SAVE
and COMPILE. SAVE stores the program in its existing BASIC
source program format. COMPILE converts the program and stores
it as an object code or machine language program.

SAVE is the best command to use when storing programs that you
might list, revise, or add to in the future. To use it type
SAVE and the appropriate file specification. (See the section
on TRSDOS file specifications).

If you SAVE a program using a file specification that already
exists, the existing program file will be wiped out. It will be
replaced by the program file you are saving.

You may leave out the file specification with SAVE. The program
will then be saved under the same file specification that you
used to load the last program with the OLD command.

To label the files that are BASIC source programs versus the
Compiled object programs, we suggest you use the extension /BAS
for Saved programs and /CMP for Compiled ‘programs.

A Saved program is in ASCII code or text format.

Examples

SAVE FILE1l/BAS.JOHNQDOE:3

Radie fhaek

PAGE 2 - 31

MODEL I/III COMPILER BASIC COMMANDS

TRS-80™

Saves the
extension
stored on

resident BASIC program. The filename is FILEl, the
is /BAS, and the password is JOHNQDOE. The file is
the disk in drive 3.

SAVE FILE1l/BAS

Saves the
extension
store the

SA

Saves the
gsame file

resident BASIC program. The filename is FILEl and the
is /BAS. Since no drive is specified, BASIC will
program in the first drive which has room for it.

resident BASIC program. It will be saved under the
specification used in the last OLD command.

Radie fhaek

PAGE 2 - 32

MODEL I/III COMPILER BASIC COMMANDS

TRS-80™

-— COMMAND --

SIZE
Print Used and Unused Memory

By executing the SIZE command, BASIC will print the amount of
space being used by the resident program and the amount of space
that is unused. The values are expressed in bytes both as a
decimal and a hexadecimal value.

Example

—— e o oo —

S1ZE

Prints the number of bytes the resident program is using, and
the number of unused bytes remaining in memory.

Radio fhaek

PAGE 2 - 33

MODEL I/III COMPILER BASIC COMMANDS
TRS-80™

~= COMMAND -~

STEP
Execute Portion of Program

STEP executes the number of lines in the program you specify,
beginning with the next executable statement.

STEP is normally used in debugging a program. You may execute
the entire program portions at a time using STEP.

Example

STEP 5

Executes the next five statements in the program.

Radio fhaek

PAGE 2 - 34

MODEL I/III COMPILER BASIC COMMANDS

TRS-80™

-— COMMAND --

SYSTEM
Return to TRSDOS

SYSTEM returns you to TRSDOS, the disk operating system.

Examples

SYSTEM

Returns you to TRSDOS READY. Your resident BASIC program will

‘ be lost.

Radio fhaek

PAGE 2 - 35

MODEL I/III COMPILER BASIC COMMANDS
TRS-80™

-- COMMAND --

TRACE ON, TRACE OFF
Turn Tracer On, Off

TRACE is a useful command for debugging and analyzing a program.
TRACE ON turns on a tracer. Each time the program advances to a
new program line, the line number will be displayed.

TRACE OFF turns the tracer off. TRACE prints whether the tracer
is on or off.

Examples

TRACE ON

When the program is RUN each program line number will be printed
in while that line is executing.

TR OFF
Turns off the tracer.
TRACE

Prints whether the tracer is on or off.

Radio fhaek

PAGE 2 - 36

TRS-80™

Compiler BASIC supplies the language RSBASIC to use in writing
programs. RSBASIC is a form of BASIC, and in this manual, we
refer to it as BASIC. This section has the reference
information you need to use RSBASIC.

We are assuming that you are already familiar with BASIC. If
you are a newcomer to BASIC, there are many good BASIC teaching
books available. Here are some we recommend:

COMPUTER PROGRAMMING IN BASIC FOR EVERYONE, Thomas Dwyer and
Michael Kaufman, Radio Shack Catalog Number 62-2015.

BASIC AND THE PERSONAL COMPUTER, Thomas Dwyer and Margot
Critchfield; Addison-Wesley Publishing Company, 1978.

BASIC FROM THE GROUND UP, David E. Simon; Hayvden Book Company,
1978.

ILLUSTRATING BASIC, Donald Alcock; Cambridge University Press,
1977.

TABLE OF CONTENTS
SECTION 2. PROGRAMMING WITH RSBASIC

Chapter 3.

BASIC Concepts ..c.riicicorcnccevensnan 3-1 through
Explains how BASIC handles and 3-37
manipulates data

Chapter 4.

Building Data Files N 4-1 through
Shows how to create and store 4-39
data files

Chapter 5.

Segmenting Programsoccoomsessonsesoes 5-1 through
Demonstrates how to divide a 5-14

long program into shorter programs
and subprograms

Chapter 6.
BASIC KeywordS ceseessaasaas...6-1 through
Contains an alphabetical entry 6-195

for each keyword

Radie Sfhaek

TRS-80™

SPECIAL MODEL I/III PROGRAMMING TIPS

Programming the Video Display

e s - - -] - -V o ————— . - - -

The Model 1/III Video Display has two modes: scroll and
graphics. With the exception of graphics characters, BASIC
prints all output to the display using the scroll mode. See
PRINT for information on programming in the scroll mode. See
CRTG for information on programming in the graphics mode. (Both
PRINT and CRTG are in the Keywords Chapter).

Radio fhaek

TRS-80"™

kkkhkhkkkkhkhkhhhhhkhkhkhkhkhkhkkhhkkkhkhkkhkkhkhkkhhrhkkhkxhkhk

* *
* Chapter 3 *
*) *
* BASIC Concepts *
* *
hkkhhkdkhkhhkhhhhhkhkhishhhhhkhohhbidhhkhhbhhhhhhhhbhihrrirkhikk

Radie fhaek

Section 3

BEDIT

Using BEDIT to Create and
Edit BASIC Source Files

™

5 XL] TRS-80

CUSTOM MANUFACTURED IN USA BY RADIO SHACK, A DIVISION OF TANDY CORR

MODEL I/III COMPILER BASIC BASIC CONCEPTS

TRS-80™

INTRODUCTION

" o i s o inom o -

This chapter explains how BASIC handles and manipulates data.
This information will prove helpful in writing programs which
handle data more efficiently.

OUTLINE OF CHAPTER 3
BASIC CONCEPTS

I. Overview —- Elements of a Program
A. Program
B. Statements
C. Expressions
D. Tests

II. How BASIC Handles Data
A. Ways of Representing Data
1. Constants
2. Variables
a. Variable Names
b. Reserved Words
c. Simple and Subscripted Variables
B. How BASIC Stores Data
1. Numeric Data
a. Integers
b. Real Numbers
2. String Data
C. How BASIC Classifies Constants
D. How BASIC Classifies Variables
E. How BASIC Converts Numeric Data
1. Real Number to Integer Type
2. Integer to Real Number Type
3. 1Illegal Conversions

III. How BASIC Performs Operations on Data
A. Operators
1. Numeric
a. Addition
b. Subtraction
c. Multiplication
d. Division
e. Integer Division
f. Exponentiation
g. Modulus Arithmetic
2. String
3. Test Operators
a. Relational

Radio Shaek

PAGE 3 - 1

MODEL I/III COMPILER BASIC BASIC CONCEPTS

TRS-80™
b. Logical
B. Functions
IV. Syntax of Expressions

A. Simple Expression
B. Complex Expression
C. Function

Radio Sfhaek

PAGE 3 - 2

MODEL I/III COMPILER BASIC BASIC CONCEPTS
TRS-80™

OVERVIEW -~ ELEMENTS OF A PROGRAM

B R b o pe———

PROGRAM

A program is made up of one or more numbered lines. Each line
contains one or more BASIC statements. BASIC allows line
numbers from 0 to 65535 inclusive. The maximum number of lines
BASIC allows in a program are 2048 lines.)

You may include up to 255 characters per line, not including the
line number. You may also have two or more statements to a
line, separated by colons.

Here is a sample program:

line BASIC colon between BASIC
number statement statements statement

100 PRINT : PRINT "THIS IS THE FIRST PRINT LINE"
110 FOR I = 1 TO 1000: NEXT I : 'DELAY LOOP
120 PRINT STRINGS(28,"-");

130 PRINT “"THIS IS THE NEXT"

When BASIC executes a program, it handles the statements one at
a time, starting at the first and proceeding to the last. Some

statements, such as GOTO, ON...GOTO, GOSUB, change this
sequence,

STATEMENTS

A statement is a complete instruction to BASIC, telling the
Computer to perform some operations. For example:

Radio Sfhaek

PAGE 3 - 3

MODEL I/III COMPILER BASIC BASIC CONCEPTS
TRS-80™

GOTO 100

Tells the Computer to perform the operations of (1) locating
line 100 and (2) executing the statement on that line.

STOP

Tells the Computer to perform the operation of stopping
execution of the program.

Many statements instruct the computer to perform operations with
data. For example, in the statement:

PRINT "SEPTEMBER REPORT"

the data is SEPTEMBER REPORT. The statement instructs the
Computer to print the data inside the quotes.

EXPRESSIONS

An expression is actually a general term for data. There are
two types of expressions:

1. Numeric expressions, which are composed of numeric
data. Examples:

(1 +5.2) / 3 D

5 * B 3.7682

ABS(X) + RND(O0) SIN(3 + E)
2. String expressions, which are composed of character data.

Examples:

AS "STRING™"

"STRINGY & "DATA™ MOS & "DATA™

SEGS{(AS,2,5) & SEGS{"MAN",1,2) MS$S & AS & BS
Functions

Functions are automatic subroutines. Most BASIC functions
perform computations on data. Some serve a special purpose such
as controlling the video display. You may use functions in the
same manner that you use any data -— as part of a statement.

Radio fhaek

PAGE 3 - 4

MODEL I/III COMPILER BASIC BASIC CONCEPTS

TRS-80™

These are some of BASIC's functions:

INT

ABS
STRINGS
SEGS

TESTS

BASIC will perform two kinds of tests to see if a certain kind
of relationship exists between two or more expressions:

1. Relational tests, which test the equivalency relationship
between the two expressions. Examples:

A =1
AS > BS

2. Logical tests, which test the logical relationship
between relations. Examples:

A$ = "YES" AND B$ = "NO"
C >5 O0ORM<KBORO>2

For the rest of this chapter, we will cover in detail the way
BASIC handles data and data operations, and how to input data
into your program. The preceding overview should give you
enough information if you are in a hurry to begin using Compiler
BASIC.

Radio fhaek

MODEL I/I1II COMPILER BASIC BASIC CONCEPTS

TRS-80™

HOW BASIC HANDLES DATA

—-—— . - S -] o S o o o o -

This section provides information on how to represent data to
BASIC and how BASIC will interpret and store it. It contains
the necessary background information for writing programs which
handle data efficiently.

WAYS OF REPRESENTING DATA

BASIC recognizes data in two forms -- either directly, as
constants, or by reference to a memory location, as variables.

Constants

All data is input into a program as “constants™ -- values which
are not subject to change. For example, the statement:

PRINT "1 PLUS 1 EQUALS"; 2
contains one string constant,
1 PLUS 1 EQUALS
and one numeric constant
2

In these examples, the constants are "input"” to the PRINT
statement. They tell PRINT what data to print on the Display.

Radie fhaek

PAGE 3 - 6

MODEL I/III COMPILER BASIC BASIC CONCEPTS
TRS-80™

These are more examples of constants:

3.14159 "L. O. SMITH"
1.775E+3 "0123456789ABCDEF"
"NAME TITLE" -123,.45E~-8
57 "AGE"
Variables
A variable is a place in memory —-- a sort of box or pigeonhole

~-- where data is stored. Unlike a constant, a variable's value
can change. This allows you to write programs dealing with
changing guantities. For example, in the statement:

AS$S = "QOCCUPATION"

The variable A$ now contains the data OCCUPATION. However, if
this statement appeared later in the program:

AS$ = "FINANCE"

The variable A$ would no longer contain OCCUPATION. It would
contain the data FINANCE.

Variable Names
In BASIC, variables are represented by names. Variable names
must begin with a letter, A through Z. This letter may be upper
or lower case and may be followed by up to 5 characters --
either digits or letters -- for a total of 6 characters.
For example

AMOUNT A Al2345 Al BlAR2 aB

are all valid and distinct variable names.

Variable names may be longer than six characters. However, only
the first six characters are significant in BASIC.

Radio fhaek

PAGE 3 - 7

MODEL I/III COMPILER BASIC BASIC CONCEPTS

TRS-80™
For example:
SUPERN SUPERNUM SUPERNUMERARY

are all treated as the same variable by BASIC.
Reserved Words

BASIC has reserved certain words as BASIC functions. You cannot
use these or the operator NOT as variable names. For example:

ABS SIN LEN ASC
cannot be used as variable names, because they are BASIC
functions. However you can use reserved words inside variable

names. For example, ABS1 and LENGTH are okay.

A BASIC statement may be used as long as it does not start the
statement. For example:

LET LET = 10
is okay, but
LET = 10

is not.

Simple and Subscripted Variables

all of the variables mentioned above are simple variables (also
termed scalars). They can only refer to one data item.

Variables may also be subscripted so that an entire list of data
can be stored under one variable name. This method of data
storage is called an array. For example, an array named A may
contain these elements (subscripted variables):

A(0) A(l) A(2) A(3) A(4)

You may use each of these elements to store a separate data
item, such as:

&
WO
i

(
(
(
(

Radio fhaek

PAGE 3 - 8

MODEL I/III COMPILER BASIC BASIC CONCEPTS
TRS-80™

A(4) = 3.7

In this example, array A is a one dimensional array, since each
element contains only one subscript. An array may also be two
dimensional, with each element containing two subscripts. For
example, a two-dimensional array named X could contain these
elements:

X(0,0) = 8.6 X{(0,1) = 3.5
X(1,0) 7.3 X(1,1) = 32.6

Compiler BASIC does not allow for more than two dimensions to an
array.

Arrays must always be dimensioned before they are used, to
reserve room in memory for them. The DIM statement dimensions
arrays. Array A, in the example above would be dimensioned
with:

DIM A(4)

to allow room for 5 subscripted variables (0, 1, 2, 3, and 4).
Array X would be dimensioned with:

DIM X(1,1)
to allow room for 2 subscripted variables in one dimension and 2
in the second dimension for a total of 2 * 2 = 4 subscripted

variables.

Note: See DIM for more information on arrays.

Radio fhaek

PAGE 3 - 9

MODEL I/III COMPILER BASIC BASIC CONCEPTS
TRS-80™

HOW BASIC STORES DATA

The way that BASIC stores data determines the amount of memory
it will consume and the speed in which BASIC can process it.

Numeric Data

BASIC stores all numbers as either integer or real.

Integers
(Speed and Efficiency, Limited Range)

To be stored as an integer, a number must be whole and in the
range of -32768 to 32767. An integer value requires only two
bytes of memory for storage. Arithmetic operations are faster
when both operands are integers.

For example:

1 32000 -2 500 -12345

can all be stored as integers.

Note: Integers are stored in two's complement notation. An
explanation of that is in the Programmers Information Section.

Real Numbers
(Maximum Precision, Slower in Computations)

BASIC can store up to 14 significant digits when a number is
stored as a real number. (It prints the first 6 digits,
rounding off the last digit.)

This is the range of real numbers:

[-1 * 10 ** -64, -1 * 10 ** 63], or
[1 * 10 ** -64, 1 * 10 ** 63]

A real number requires 8 bytes of storage. The first byte is
for the exponent. Two digits of the number are stored in each
of the next 7 bytes.

Radio Shaek

PAGE 3 - 10

MODEL I/III COMPILER BASIC BASIC CONCEPTS
TRS-80™

Note: An explanation of the way BASIC stores real numbers, in
Binary Coded Decimal format, is in the Programmers Information
Section.

String Data

——— e " - - . -

Strings (sequences of characters) are useful for storing
non-numeric information such as names, addresses, text, etc. You
may store any ASCII characters as a string. (A list of ASCII
characters is in the Appendix.)

For example, the data constant:

Jack Brown, Age 38
can be stored as a string of 18 characters. Each character {(and
blank) in the string is stored as an ASCII code, requiring one

byte of storage. BASIC would store the above string constant
internally as:

- - - -~ "] T T — o V" - V> " " - V" oo _— 7~ G V. il AT O T]~ " N~ —— — (" " -~ - — T —— " o> -

e — " - -~ - A Vo T ot — T "~ —— T i - A ———] WAL T S o> -~ - ——{— Ty " " | — i oo o o S g o O

e o - > " - e - — Ao ol]~ " > " -~ —— s S 7 Tl] il N] -] o o, o T— ST . - ", -

- —_— o o T~ — " —e " " —— " "~ . - oo U o W, o e D A g S o " D " T e S, - - S 7" — " - T— e, o — o —— V- — T~

A — -~ - ———— — o _ S, o S — -~ " " — . T— S o S S ——_ o - " -~V {—_— -~ - -~ — " > " AT - oy o> -

A string can be up to 255 characters long. Strings with length
zero are called "null" or "empty".

Radio fhaek

MODEL I/III COMPILER BASIC BASIC CONCEPTS
TRS-80™

HOW BASIC CLASSIFIES CONSTANTS

When BASIC encounters a data constant in a statement, it must
determine the type of the constant (string, integer, or real).
These are the rules it uses:

If the value is enclosed in double-quotes, it is a string. For
example:

"YES A1

"3331 waverly Way"

"1234567890"

the values in quotes are automatically classified as strings.

If the value has a & mark in front of it, it is a hexadecimal
number. For example:

&0 &7FCO &FFFF

are all hexadecimal numbers. Hexadecimal numbers are actually
stored as integers. You may use hexadecimal numbers in special
cases such as in the EXT statement.

If the value is not in guotes, it is a number. (An exception to
this rule is during data input by an operator. See INPUT, LINE
INPUT, INKEYS$, and INPUTS.)

For example:
123001
1
-7.3214E+6

are all numeric data.

Radio Sfhaek

PAGE 3 - 12

MODEL I/IIT COMPILER BASTC BASIC CONCEPTS
TRS-80™

- ——-— - -

Whole numbers in the range of -32768 to 32767 are integers. For
exanmple:

12350

-12
10012

are integer constants.

If the number contains a decimal point or is outside the integer
range defined in rule 3 above, it is real. Also, 1if it contains
the letter E, it is real.

Note: Exponents are printed with the letter E. The E indicates
that the value printed multiplied by the specified power of 10
represents the data stored. For example:

1. E+7
Represents the value 10000000, or 1 * 10 ** 7,
1. E-8

Represents the value .00000001 or 1 * 10 ** -8.

Radie fhaek

PAGE 3 -~ 13

MODEL I/III COMPILER BASIC BASIC CONCEPTS
TRS-80™

HOW BASIC CLASSIFIES VARIABLES

When BASIC encounters a variable name in the program, it
classifies it as either a string, integer or real number. It
will only classify the variable name once in the program. You
cannot get BASIC to re-classify a particular variable name.

These are the rules BASIC uses to classify variables:

Unless BASIC encounters a definition statement (described in
rule 2 below) or a type declaration tag (described in rule 3
below), BASIC classifies all variable names as real number types
and stores them in 8 bytes. For example:

AB AMOUNT XY L

are all real number variables initially. If this is the first
line of your program:

Lp = 1.2

BASIC will classify LP as a real number variable.

If BASIC encounters a definition statement, BASIC will classify
variables according to the instructions of that statement.
There are three definition statements:

STRING

INTEGER
REAL

The STRING Statement

STRING instructs BASIC to classify all variable names as string.
For example:

STRING

Radie fhaek

PAGE 3 - 14

MODEL I/III COMPILER BASIC BASIC CONCEPTS
TRS-80™

instructs BASIC to classify all variable names as string.

STRING L

i

instructs BASIC to classify only those variable names beginning
with the letter L as string.

BASIC assumes that all string variables should be stored in 255
bytes. For example, even though this statement only assigns 4
bytes of data to L:

L = "JOHN"

BASIC stores this data in 255 bytes. This causes L to contain
251 bytes of unused space.

] 255 bytes /

To keep from wasting space in memory, you may specify the number
of bytes to use in storing variables. For example, in this
program:

10 STRING*4 L
20 L = "JOHN"™
30 LAST = "ALEXANDER"

L and LAST will each contain 4 bytes of string data:

L———— 4 bytes —————-—J L——w—— 4 bytes -——-————-—J

If you want to store all variable names beginning with the

Radie fhaek

PAGE 3 - 15

MODEL I/III COMPILER BASIC BASIC CONCEPTS

TRS-80™

letter L as string variables except for the variable LAST, you
can use the DIM statement:

10 STRING*4 L
20 DIM LASTS9
30 L = "JOHN"
40 LAST = "ALEXANDER"

This program stores the variable L in 4 bytes and LAST in 9
bytes.

L~«---- 4 bytes ————-———J

G bytes

Note: See DIM and STRING for more information.

The INTEGER Statement

INTEGER instructs BASIC to classify all variable names as
integer. For example:

INTEGER A

instructs BASIC to classify all variable names beginning with
the letter A as integers.

INTEGER
instructs BASIC to classify all variable names as integers.
In the present form of BASIC, all integer variables are stored
in 2 bytes.
The REAL Statement

REAL instructs BASIC to classify variable names in its letter
list as real numbers. For example, this program:

10 INTEGER

Radio fhaek

PAGE 3 - 16

MODEL I/II1I COMPILER BASIC BASIC CONCEPTS
TRS-80™

20 REAL X-Z

instructs BASIC to classify all variable names, except for those
beginning with X, ¥, or Z, as integers. BASIC will classify
variable names beginning with X, Y, and Z as real.

In the present form of BASIC, all real number variables are
stored in eight bytes.

Illegal Use of Definition Statements

You cannot introduce a definition statement after an executable
statement. An executable statement is a statement other than a
definition statement. For example:

10 L = 10
20 STRING

produces an error, since STRING may not follow the executable
statement L = 10. However,

10 STRING
20 L = 10

1s correct.

If a variable name has a type declaration tag following it,
BASIC will classify it as string or integer according to the
attributes of that tag:

$ String
% Integer
Real

(However, you cannot use tags to re-classify variable names
which BASIC has already classified previously in the program.)

For example, if the variable names S, MON, FINANCE, and CHART
have not yet been used in the program:

S$ MONS$ FINANCES - CHARTS

will all be classified as string variable names, regardless of

Radio fhaek

PAGE 3 - 17

MODEL I/III COMPILER BASIC BASIC CONCEPTS
TRS-80™

what attributes have been assigned to the letters 8, M, F, and
C.

If the variable names I, LM, NUM, and COUNTER have not yet been
used:

1% LM% NUM$% COUNTERS

will all be classified as integer variable names, regardless of
what attributes have been assigned to the letters I, L, N, and
C.

If the variables, LR, ER, MP235, and LITE have not yet been
used:

LR# ER# MP235% LITE#

will all be classified as real number variables, regardless of
what attributes have been assigned to the letters L, E, and M.

For example, in the program:

10 STRING A
20 AB = "NEW"

The statement:
30 AB% = 1

produces an error, since AB has already been classified as a
string variable and cannot be re-classified. However:

30 AR% = 1

is accepted, since the type declaration tag (%) overrides the
STRING A statement.

Once you use a type declaration tag to classify variables, you
do not need to use the tag any more in the program. For
instance, after this statement is executed:

BS = "DATA™"

You may refer to the string variable BS$ as simply B. B will
retain the classification of a string variable throughout the

rest of the program.

(Even though you only need to use the tag when you introduce the
variable name, we suggest you use the tag every time you use the

Radie fhaek

PAGE 3 - 18

MODEL I/III COMPILER BASIC BASIC CONCEPTS
TRS-80™

name. This makes the program more consistent and simplifies
editing.)

Radie fhaek

PAGE 3 - 19

MODEL I/III COMPILER BASIC BASIC CONCEPTS
TRS-80™

HOW BASIC CONVERTS NUMERIC DATA

Often your program might ask BASIC to assign an integer data
constant to a real number variable, such as:

A =5

or a real number constant to an integer variable, such as:

To do this, BASIC must first convert the data constant. This is
how it is done:

Real Number to Integer Type

BASIC truncates (ignores) the fractional part of the original
value. The truncated value must be in the range of [-32768,
32767 1.
Examples
A% = -10.5
Assigns A% the value -10.
A% = 32767.9
Assigns A% the value 32767.
A% = 2.5E+3
Assigns A% the value 2500
A% = -123.45678901234
Assigns A% the value -123.

A% = 60000

Prints an integer overflow warning and assigns A% the value
32767. (32767 is the highest number that can be stored as an

integer).

Radie fhaek

PAGE 3 - 20

MODEL I/III COMPILER BASIC BASIC CONCEPTS
TRS-80™

Integer to Real Number Type

B e T epap——

In converting integers to real numbers, the converted value is
equal to the original value, but it consumes 4 times as much
storage space. (Integers are stored in 2 bytes and real numbers
in 8 bytes). For example:

A=1

Stores 1.0000000000000 in A.

Illegal Conversions

- — U B — - - TV W W S -

BASIC cannot automatically convert numeric values to string, or
vice versa. For example, the statements:

A$ = 1234
A% = "1234"
are illegal. (Use STR$ and VAL to accomplish such conversions).

Radie fhaek

PAGE 3 =~ 21

MODEL I/III COMPILER BASIC BASIC CONCEPTS
TRS-80™

HOW BASIC PERFORMS OPERATIONS ON DATA

This section explains how you can instruct BASIC to manipulate
or test your data. The two means you have available are
operators and functions.

OPERATORS
An operator is a single symbol or word which signifies some
action to be taken on one or two specified values referred to as

operands.

In general, an operator is used like this:

operand-1 operator operand-2
operand-1 and -2 can be expressions.

A few operations take only one operand, and are used like this:

operator operand
This is the form for a unary operation.

Examples:

6 + 2

The addition operator + connects or relates its two operands, 6
and 2, to produce the result 8.

Radio fhaek

PAGE 3 - 22

MODEL I/III COMPILER BASIC BASIC CONCEPTS
TRS-80™

-5

The negation operator - acts on a single operand 5 to produce
the result negative 5.

Neither 6 + 2 or -5 can stand alone; they must be used in
statements to be meaningful to BASIC. For example:

A =6+ 2
PRINT =5

Operators fall into three categories:

Numeric
String
Test

based on the kinds of operands they require and the results they
produce.

Numeric Operators

L R —

Numeric Operators are used in numeric expressions. Their
operands must always be numeric, and the result they produce is
one numeric data item.

In the descriptions below, we use the terms integer and real
operations. Integer operations involve two-byte operands, and
real operations involve eight-byte operands. Real operations
are slower, since they involve more bytes.

There are nine different numeric operators. Two of them, sign +
and sign -, are unary, that is, they have only one operand. A
sign operator has no effect on the precision of its operand.

For example, in the statement:
PRINT ~77, +77

the sign operators - and + produce the values negative 77 and
positive 77, respectively.

Note: When no sign operator appears in front of a numeric term,
+ is assumed.

The other numeric operators are all binary, that is, they all

Radio fhaek

PAGE 3 - 23

MODEL I/III COMPILER BASIC BASIC CONCEPTS
TRS-80™

take two operands. These operators are:

W A - T TS > 3 T ST Vo GIN XD T A S S L LU 1O W "> o o - - —" " S —— o 7" W " o . ;-

+ Addition

- Subtraction

* Multiplication

/ Division

! Integer division (keyboard character <SHFT 1>
*k Exponentiation

MOD Modulus arithmetic

——— o> —— v — -~ " - — o S0 " S orn o 1"~ T~ —— O] -~ o - - " Vo ‘", "~ _— " " —-“ - - - -

Addition
The + operator is the symbol for addition. If both operands are
integers, BASIC will perform integer addition. Otherwise, BASIC
will convert any operands that are integers to real numbers, and
perform real number addition. .
Note: See the section on How BASIC Converts Data (earlier in
this chapter) for an explanation on how integers are converted
to real numbers.
Examples:

PRINT 2 + 3
Integer addition.

PRINT 30000 + 10000

Integer addition. Since the upper limit for integers is 32767,
BASIC prints an overflow error warning.

PRINT 1.2 + 3
Real number addition. (The integer 3 is converted to a real
number.)
Subtraction

The - operator is the symbol for subtraction. As in addition,
both operands must be integers to perform integer subtraction.

Examples:

Radio fhaek

PAGE 3 - 24

MODEL I/IIT COMPILER BASIC BASIC CONCEPTS

TRS-80™

PRINT 33 -~ 11
Integer subtraction.
PRINT 12.345 - 11

Real number subtraction.

Multiplication
The * operator is the symbol for multiplication. Once again,
both operands must be integers to perform integer
multiplication,
Examples:

PRINT 33 * 11
Integer multiplication.

PRINT 32000 * 10

Integer multiplication. Since the upper limit for integers is
32767, BASIC prints an overflow error warning.

PRINT 12.345 * 11

Real number multiplication.

Division
The / symbol indicates ordinary division. Division is always

with real numbers. If an operand is an integer, BASIC will
convert it to a real number to perform real number division.

Examples:
PRINT 3/4

Real number division.
PRINT 3 / 1.2

Real number division.

Rado Shaek

PAGE 3 - 25

MODEL I/III COMPILER BASIC BASIC CONCEPTS
TRS-80™

Integer Division
The integer division operator ! is input by pressing <SHIFT 1>.
It converts its operands into integer type, then performs
integer division. 1In integer division, the remainder is
ignored, leaving an integer result. (If either operand is
outside the range [-32768,32767], an error will occur.)
For example:
PRINT 7 ! 3
prints the value 2, since 7 divided by 3 equals 2 remainder 1.
PRINT -7 ! 3

prints -2.

Exponentiation

The symbol ** denotes exponentiation. It converts both its
operands to real numbers and returns a real number result.

For example:
PRINT 6 ** .3

prints 6 to the .3 power.

Modulus Arithmetic
The MOD ("modulo") operator allows you to do modulus arithmetic.
In modulus arithmetic, every number is converted to its
equivalent in a cyclical counting scheme. For example, a
24-hour clock indicates the hour in modulo 24. Although the
hour keeps incrementing, it is always expressed as a number from
0 to 23.
MOD requires two operands, for example:

A MOD B

B is the modulus (the counting base) and A is the number to be .

Radio fhaek

PAGE 3 - 26

MODEL I/III COMPILER BASIC BASIC CONCEPTS

TRS-80™

conve:ted.

(Expressed in mathematical terms, A MOD B returns the remainder
after whole-number division of A by B. In this sense, it is the
converse of !, which returns the whole number quotient and
ignores the remainder.)

MOD converts both operands to integer type before performing the

operation. If either operand is outside the range
[-32768,32767], an error will occur.

Examples:

PRINT 155 MOD 15

Prints 5, since 155!15 gives a whole number quotient of 10 with
remainder 5.

PRINT 79 MOD 12
Prints 7, since 79!12 equals 6 with remainder 7.
PRINT -79 MOD 12
Prints -7.
10 PRINT "TYPE IN AN ANGLE IN DEGREES"
20 INPUT A%
30 PRINT A; "="; A ! 90; " * 90 +"; A MOD 90

Input a positive angle greater than 90. Line 20 expresses the
angle as a multiple of 90 degrees plus a remainder.

String Operator

. - ——— T~ >~_—-—— -, . - -

BASIC has a string operator (&) which allows you to concatenate
(link) two strings into one. This operator should be used as
part of a string expression. The operands are both strings and
the resulting value is one piece of string data.

The & operator links the string on the right of the & sign to
the string on the left. For example:

PRINT "CATS " & "LOVE " & "MICE"

prints:

Radio fhaek

PAGE 3 - 27

MODEL I/III COMPILER BASIC BASIC CONCEPTS
TRS-80™

CATS LOVE MICE

Since BASIC does not allow one string to be longer than 255
characters, you need to be careful that your resulting string is
not too long.

Test operators

——— o - -~

You may use test operators in IF...THEN statements to test a
certain kind of relationship between two or more expressions.
This allows you to build elaborate decision-making structures
into your programs. You may test either string or numeric
expressions.

Test- operators will return one of two results: True or False.
BASIC has two kinds of test operators: relational and logical.
The relational operators are <, >, and =; the logical operators
are AND, OR, XOR, and NOT.

Relational operators

Relational operators compare two numerical or two string
expressions. It then reports whether the comparison you set up
in your program is true or false.

Numerical comparisons

This is the meaning of the operators when you use them to
compare numeric expressions:

< Less than
> Greater than
= Equal to
<> or >< Not eqgual to
=< or <= Less than or equal to
=> or >= Greater than or equal to

Examples of true relations:

2

NN

AR ANAYA
LI B

5
5
2

Radio fhaek

PAGE 3 - 28

MODEL I/III COMPILER BASIC BASIC CONCEPTS

TRS-80™

v

5 2
7 =17
Relational operators may only be used in an IF...THEN statement.
For example

IF A = 1 THEN PRINT "CORRECT"

BASIC tests to see if A is equal to 1. If it is, BASIC prints
the message.

IF X > 100 THEN 500

If the relation is true; that is, if X is larger than 100, then
control branches to line 500.

String Comparisons

The relational operators for string expressions are the same as
above, although their meanings are slightly different. 1Instead
of comparing numerical magnitudes, the operators compare their
alphabetical sequence. This allows you to sort string data:

< Precedes
> Follows
= Has the same precedence
>< or <> Does not have the same precedence
= Precedes or has the same precedence
= Follows or has the same precedence

BASIC compares the string expressions on a character-by-
character basis. When it finds a non-matching character, it
checks to see which character has the lower ASCII code. The
character with the lower ASCII code is the smaller (precedent)
of the two strings.

Note: The appendix contains a listing of ASCII codes for each
character.

Examples
“A " < "B"

The ASCII code for A is decimal 65;: for B it's 66.
"CODE"™ < "COoOoL"

The ASCII code for O is 79; for D it's 68.

Radie fhaek

PAGE 3 - 29

MODEL I/III COMPILER BASIC BASIC CONCEPTS

TRS-80™

If while making the comparison, BASIC reaches the end of one
string before finding non-matching characters, the shorter
string is the precedent. For example:

"TRAIL" < "TRAILER"
Leading and trailing blanks are significant. For example:

1] All < “A 11}
ASCII for the space character is 32; for A it's 65.

uZ_80 "o llz_80all

The string on the left is four characters long; the string on
the right is five.

As with the numerical comparisons, these string comparisons can
only be used in IF...THEN statements. These are examples of how
they might be used:

IF A$ < BS THEN 50

If string AS$ alphabetically precedes string B$, then the program
branches to line 50.

IF R$ = "YES" THEN PRINT AS$

If R$ equals YES then the message stored as AS$ is printed.

Logical Operators

Logical operators make logical comparisons. Like relational
operators, they can only be used in IF/THEN statements and will
only return a result of true or false. Except for the NOT
operator, you may only use logical operators to compare two or
more relations. For example:

IF A=1 OR C =2 THEN PRINT X

The logical operator, OR, compares the two relations A=1 and
C=2.

Logical operators do not perform bit manipulations. Use the
functions AND, OR, and XOR for that purpose.

Radie fhaek

PAGE 3 - 30

MODEL I/IIY COMPILER BASIC BASIC CONCEPTS

TRS-80™

This is how to use the logical operators:
AND

If both relations are true, then AND returns a logical true.
Otherwise, it returns a logical false. For example:

IF A = B AND B < ¢ THEN 100

OR

If either of the relations is true, or both are true, OR returns
a logical true. Otherwise it returns a logical false. For
example:

IF GAME = OVER OR TIME >= LATE THEN 500

XOR ("Exclusive OR")

Only when ONE of the relations is true (but not both) does XOR
return a logical true. Otherwise it returns a logical false.
For example:

IF AS = "YES" XOR B$ = "YES" THEN PRINT "ONLY ONE YES"

NOT

NOT is a unary operator, which means it only acts on one
operand. The operand, like all the ones above, is a relation.
When the relation is true, NOT returns a logical false. When it
is false, NOT returns a logical true. For example:

IF NOT(AS$ < "M") THEN PRINT AS$; "DOES NOT PRECEDE M"

Hierarchy of Operators

o —— o — o " W T - . T o SO o s 1o B 20

When your expressions have multiple operators BASIC performs the
operations according to a well-defined hierarchy so that results
are always predictable.

Parentheses

Radio fhaek

PAGE 3 - 31

MODEL I/III COMPILER BASIC BASIC CONCEPTS

TRS-80™

When a complex expression includes parentheses, BASIC always
evaluates the expressions inside the parentheses before
evaluating the rest of the expression. For example, the
expression: »

8 - (3-2)
is evaluated like this:

3 -2=1
8§ -1 =17

With nested parentheses, BASIC starts evaluating the innermost
level first and works outward. For example:

4 * (2 - (3 - 4))

is evaluated like this:

Order of Operations

When evaluating a sequence of operations on the same level of
parenthesis, BASIC uses a hierachy to determine what operation
to do first.

The two listings below show the hierarchy BASIC uses. Operators
are shown in decreasing order of precedence. Operators listed
in the same entry in the table have the same precedence and are
executed as encountered FROM LEFT TO RIGHT:

Numerical operations:

% %
+, - ({unary sign operations -- not addition or
subtraction)

Radio Sfhaek

PAGE 3 - 32

MODEL I/III COMPILER BASIC BASIC CONCEPTS

TRS-80™

X0R

String operations:

&

<y 24 =, <=, >=, <>
NOT

AND

OR

XOR

For example, in the line:
X * X + 5*%%2.8

BASIC will find the value of 5 to the 2.8 power. Next, it will
multiply X * X, and finally add this value to the value of 5 to
the 2.8. If you want BASIC to perform the indicated operations
in a different order, you must add parentheses. For example:

X * (X + 5%%2.8)
or
X * (X + 5)**2.8
Here's another example:
IF X= 0 OR Y > 0 AND Z = 1 THEN 255

The relational operators = and > have the highest precedence, so
BASIC performs them first, one after the next, from left to
right. Then the logical operations are performed. AND has a
higher precedence than OR, so BASIC performs the AND operation
before OR.

If the above line looks confusing because you can't remember
which operator is precedent over which, then you can use
parentheses to make the sequence obvious:

IF X =0 OR ((Y>0) AND (Z=1)) THEN 255

Radio fhaek

PAGE 3 - 33

MODEL I/III COMPILER BASIC BASIC CONCEPTS
TRS-80™

FUNCTIONS

A function is a built-in sequence of operations which BASIC will
perform on data. A function is actually a subroutine which
usually returns a data item. The BASIC Compiler's functions
save you from having to write a BASIC routine, and they operate
faster than a BASIC routine would.

A function consists of a keyword followed by the data that you
specify. This data is always enclosed in parentheses and, if
more than 1 data item is required, separated by commas.
If the data required is termed ‘number' you may insert any
numerical expression. If it is termed ‘string' you may insert
either a string constant or a string variable.
Examples:

SQR(A + 6)
Tells BASIC to compute the square root of A + 6.

SEGS (AS$, 3, 2)

Tells BASIC to return a substring of the string A$, starting
with the third character, with a length of 2.

Functions cannot stand alone in a BASIC program. Instead they
are used in the same way you use expressions -- as the data in a
statement.

For example
A = SQR(7)

Assigns A the data returned as the square root of 7.
PRINT SEGS (AS, 3, 2)

Prints the substring of A$ starting at the third character and
two characters long.

If the function returns numeric data, it is a numeric function
and may be used in a numeric expression. If it returns string
data, it is a string function and may be used in a string
expression.

Radie fhaek

PAGE 3 - 34

MODEL I/III COMPILER BASIC BASIC CONCEPTS

TRS-80™

SYNTAX OF EXPRESSIONS

————————— o - - - —"_ 1> s s s o,

Understanding the syntax of expressions will help you put
together powerful statements -- instead of using many short
ones.

As we have stated before, an expression is actually data. This
is because once BASIC performs all the operations, it returns
one data item. An expression may be either a string or numeric
expression. It may be composed of:

Constants
Variables
Operators
Functions

Expressions may be either simple or complex:

A SIMPLE EXPRESSION consists of a single TERM: a constant,
variable or function. If it is a numeric term, it may be
preceded by an optional + or - sign.

For example:

+A 3.3 =5 SQR(8)

are all simple numeric expressions, since they only consist of
one numeric term.

AS STRINGS (20, AS) "WORD" "M"

are all simple string expressions since they only consist of one
string term.

Radio Sfhaek

PAGE 3 - 35

MODEL I/III COMPILER BASIC BASIC CONCEPTS
TRS-80™

Here's how a simple expression or a term is formed:

A COMPLEX EXPRESSION consists of two or more terms (simple
expressions) combined by operators. For example:

A-1 X+3.2-Y A/3 * (LOG(Y)) ABS(B) + LOG(2)
are all examples of complex numeric expressions.

A$ & BS "Z" & Z$ STRINGS (10, "A") & "M"

are all examples of complex string expressions.

This is how a complex numeric expression is formed:

Radie fhaek

PAGE 3 - 36

MODEL I/III COMPILER BASIC BASIC CONCEPTS

TRS-80™

This is how a complex string expression is formed:

Most FUNCTIONS, except functions returning system information,
require that you input either or both of the following kinds of

data:

one or more numeric expressions
one or more string constants or string variables

This is how a function is formed:

If the data returned is a number, the function may be used as a
term in a numeric expression. If the data is a string, the
function may be used as a term in a string expression.

Radio fhaek

PAGE 3 - 37

TRS-80™

khkhhkhkhhhhhhhhkhkhhhhhkhkhhkhkhkhkkhrkhhhkhkkhhtdkk

Chapter 4

* *
* *
* *
* BUILDING DATA FILES *
* *
* *

hAhkkhkhhhhhkhdhhhkhkhhhhkhhkhhhhdhhbhdhhhhbdhhkhdhdk

Radio Sfhaek

Section 4

Programmer’s ! CAT. NO.
= 26-220
Information -

Information on the Stand
Alone Runtime System,
Memory Usage, Assembly
Language, Subprograms,
and File Formats

Radio Mook Fuae

CUSTOM MANUFACTURED IN USA BY RADIO SHACK, A DIVISION OF TANDY CORP

MODEL I/III COMPILER BASIC BUILDING DATA FILES

TRS-80™

INTRODUCTION

——-—— - —-————— - -

This chapter explains how to write a BASIC program which will
store data files on Model I/III diskettes. The Overview
explains the different methods:-you can use to store data. The
next sections run through the procedures to use in building the
various types of data files.

OUTLINE FOR CHAPTER 4
BUILDING DATA FILES

I. Overview
A. Introduction to Data Files
B. Types of Records
1. Fixed Length Records
2. Variable Length Records)
C. Ways of Accessing Records -
1. Sequential Access
2. Direct Access
3. Indexed Access (ISAM)
D. Input/Output Methods
1. Stream Input/Output
2. Formatted Input/Output
3. Binary Input/Output

Ix. Building a Sequential Access File
A. Using Stream Input/Output
B. Using Formatted Input/Output
C. Using Binary Input/Output

III. Building a Direct Access File
A. Using Formatted Input/Output
B. Using Stream Input/Output
C. Using Binary Input/Output

Iv. Building an Indexed Access File

Radie fhaek

PAGE 4 - 1

MODEL I/III COMPILER BASIC BUILDING DATA FILES
TRS-80

OVERVIEW

INTRODUCTION TO DATA FILES

Data is stored on diskette in a data file. A data file is made
up of records. Each record may contain from cne to 256 bytes.
Normally, one byte can hold one character of data.

For example, if the data file is a mailing list, each record
could contain the data for one address. If the longest address
contains 50 characters of data, the record would consume a
little more than 50 bytes of space on the diskette.

A data file may contain as many records as you want and have
room for. The system allocates space for each new record as you
build the file. 1If you want to, you have the option of
allocating space for your file in advance. To do this, use the
TRSDOS "CREATE" command. (See the Model 1I/III Disk Operating
System.)

This overview covers:

1. the types of records you can build

2. the different ways you can access these records,

3. the methods you can use to input and output data to
these records.

Radie fhaek

PAGE 4 - 2

MODEL I/III COMPILER BASIC BUILDING DATA FILES

TRS-80™

TYPES OF RECORDS

A data file may contain records which are fixed or varied in
length:

Fixed Length Records (FLRs)

—- ———— " 7~ - - S]] - s T]S T D" T o oo

In a file containing FLRs, each record is the same length. This
length can be from one to 256 bytes and is set the first time
you open the file for use. Once set, the length may not be
changed unless you are over-writing the file with new data.

This is a picture of an FLR file containing three records:

l RECORD 1 RECORD 2 RECORD 3

I e e e 2 . s s e . i e] e e e e e e o s s e s e o t _.__..................‘...,.......‘.....l

The advantage of using FLRs is that the position of each record
can be easily calculated. For this reason, you can immediately
access any record in the file. For instance, to access the
contents of record 3, you do not have to read the contents of
the first two records.

The disadvantages are obvious. FLRs often contain a lot of
empty space. Also, the record length must be determined in
advance.

Variable Length Records (VLRs)

s . onems o W o ;- >~ —— s S o - o~ oo

In a file containing VLRs, each record may vary in length. Here
is a picture of a VLR file containing three records:

e i s s s o s doun | o i e v s o o s T o Ko o " -7 o7 o s o | —— o

——— o - | —_——" o - - 1o[" o _-——— - . - oo o tonn v | o o - qoros s

Unlike FLRs, only the position of the first record and the end
of the file can be located. To locate any other record, you
must read each record in sequence, beginning with the first

Radio Sfhaek

PAGE 4 - 3

MODEL I/III COMPILER BASIC BUILDING DATA FILES
TRS-80™

record, until you locate the record you want.

The advantage of using VLRs is that it is an easier and more
flexible way of building a file. Virtually no space is wasted
in a VLR file; each new record begins where the data in the last
record ended.

Radio fhaek

PAGE 4 - 4

MODEL I/I1II COMPILER BASIC BUILDING DATA FILES

TRS-80™

WAYS OF ACCESSING RECORDS

There are three ways you may use to access a record in a file:

1. seguential access
2. direct access
3. indexed access

In sequential access, you must access each record sequentially.
With direct access, you can access a record directly by
referencing its record number. Indexed access allows you to
access a record directly by referencing a key name which is
indexed alphabetically.

Sequential Access

T S o " S " o o o s o " <O o

A sequential access file is normally made up of VLRs, although
it may also be made up of FLRs. Since it is equipped for VLRs,
only the first record and the end of the file can be directly
accessed. Every other record must be accessed in sequence:
record 1, record 2, record 3, the last record.

Using sequential access gives you the same advantages and
disadvantages of using VLRs. It is a compact, easy, and
flexible type of file to build, but it is time consuming to
access individual records.

For instance, to update the file, you must read in every record,
make any changes, and then write out each record to a new file
on the diskette.

Some good uses for sequential access are:

1. PFiles which do not need to be accessed often, such as
prior bookkeeping records.

2. Files which are only meant to be accessed in sequence,
such as a file containing text information.

3. Files with widely varying record lengths.

4. Piles where the maximum record length cannot be
determined in advance.

Badie fhaek

PAGE 4 - 5

MODEL I/III COMPILER BASIC BUILDING DATA FILES
TRS-80™

Storage Format

In a variable length segquential access file, the first byte in

each record gives the actual length of the record. This equals
the amount of data plus one. Here is a picture of a record in
a sequential access file:

D

R

E

C

0

R

| -—-
l 7

In a fixed length sequential access file there is no count.

Direct Access

A direct access file (sometimes called random access) may only
contain FLRs and has the advantages and disadvantages of FLRs.
You assign each record a number when writing the record to the
diskette. You may then use these record numbers to read or
write to any record in the file.

Building a direct access file involves more planning than a
sequential access file, since the record length must be
determined in advance. To determine it, you need to calculate
the maximum amount of data in a record, and how much space this
record will consume on the diskette.

Some good uses for direct access are:

1. Files which contain standard sized records such as a
mailing list. :

2. Files which need to be continually updated such as
inventory data.

Storage Format

This is a picture of a record in a direct access file which has
a fixed length of 12 bytes of data for each record:

Radie fhaek

PAGE 4 - 6

MODEL I/III COMPILER BASIC BUILDING DATA FILES

TRS-80™

I

6

0

R

e v

-é_i-é*

P —.

0

Ep——

0

P——— o e s

The first byte of the record contains the actual number of bytes
of data in the record. The second byte is not used in BASIC and
is always the number 0.

The next bytes are for the actual data in the record. Since
this record only has six bytes of data and the fixed record
length has been set at 12 bytes, it contains six empty bytes.

Sometimes you might have a record containing no data in it,
either because the record was deleted or no data was ever
assigned to it. For example, say you had data in record 1 and
record 3, but no data in record 2. Record 2 would still consume
the same amount of space on disk as all the other records. This
is what record 2 would look like:

-”-!~h~}ﬁh-}m—-}‘“—?_“_}——-)"--!mﬁné__—\‘——}m“wi

Often, after continually updating a direct access file, the file
will contain a lot of deleted records and hence, a lot of empty
space. To maintain this kind of file, you might periodically
need to run a program which "packs™ the data by assigning all

the records new record numbers; thereby eliminating the space
being consumed by deleted records.

rp—

0

P~

prp——

0

Indexed Access (ISAM)

B Ny —— IS S

Like direct access, an indexed access file may only contain FLRs
and offers the advantages and disadvantages of FLRs. Indexed
files differ in the means of accessing the record. Rather than
being accessed by a record number, the record is accessed by a
key which you assign to the record when writing it to the
diskette. This key may be any string.

For example, each record in a payroll file could be assigned the
person's last name as a key rather than a record number. This
way you can use the person's last name, rather than looking up
the record number, as a way of immediately accessing his or her

Radie fhaek

PAGE 4 - 7

MODEL I/III COMPILER BASIC : BUILDING DATA FILES
TRS-80™

record.

Indexed files are the easiest to operate and maintain.
Operators can more easily use keys containing meaningful data
than record numbers to access individual records in the file.

Maintaining an indexed file which has been updated frequently is
also the easiest. Since a deleted record does not consume any
space on the disk, it is not necessary to periodically run
programs to pack all the records.

The disadvantage of indexed files is the amount of space they
consume on the diskette. The overhead of the key index takes
extra space. To build a file which uses disk space efficiently,
you must carefully calculate the record length, key length, and
number of records in the file. (The storage format is discussed
in the Programmers Information Section.)

Some good uses for indexed access are:

1. Files which will be handled by many operators, such as
checking account data at a bank.

2. Files which will continually have records inserted and ‘I’
deleted.

Radie fhaek

PAGE 4 - 8

MODEL I/III COMPILER BASIC BUILDING DATA FILES
TRS-80™

SEQUENTIAL ACCESS

BEGINNING

RECORD 2 RECORD 3

DIRECT ACCESS

3
2 ‘ 4

RECORD 2 1 BECORD 3

INDEXED ACCESS

RECORD 2 RECORD 3

Radio Shaek

PAGE 4 - 9

MODEL I/III COMPILER BASIC BUILDING DATA FILES
TRS-80™

INPUT/OUTPUT METHODS

After deciding which type of records you will use and how to
access the records, you need to decide how to input and output
data to the records.

In choosing an input/output method, there are two things to
consider:

1. how the data will be stored in the record
2. how the data will be fielded in the record

Fielding is a way of dividing data into different categories.
For example, you might divide each record in a mailing list into
five fields: (1) name, (2) address, (3) city, (4) state, (5)
zip code. A record may contain as many data fields as you can
fit in the record.

BASIC offers three methods of inputting and outputting data to a
record:

1. Stream
2. Formatted
3. Binary

Each of these methods may be used with any type of records and
with any type of access method.

The stream and formatted methods store each character of data in
its ASCII format. This means each character consumes one byte
of space on the diskette.

The binary method stores numeric data the same way it is stored
in memory: integers in two bytes and real numbers in a maximum
of nine bytes. For instance, the integer -23456 would consume
six bytes of disk space with stream or formatted input/output,
but only two bytes with binary.

The stream method separates each field by a comma. The
formatted method formats the fields according to your
specifications. The binary methods separates the fields by a
length byte, or, if it is an integer, no field separator is
necessary.

Note: 1In the following illustrations of stored records, only

the data portion is shown. The beginning of the record would be
in the format of the access method that is being used

Radio fhaek

PAGE 4 - 10

MODEL I/III COMPILER BASIC BUILDING DATA FILES

TRS-80™

{sequential, direct, or indexed).

Stream Input/Output

. i b A - S Dl i bt A i i S S

When data is input and output in a stream, the PRINT statement
outputs the data to the diskette, and the INPUT statement inputs
data from the diskette. It is called the stream method because
the length and format for the fields can differ with each
record.

For example, if you were outputting records with three fields of
data:

1. first name
2. last name
3. ID number

And this was the data for the first two records:

First name Last name ID

{FPIRSTS) (LASTS) {(ID)
record 1 J DAY 42
record 2 JANE MILLER 2

You would input the data simply by using a comma to delimit the
end of one field and the beginning of the next field:

FIRSTS$, LASTS$, ID

The data for these two records would be stored on the diskette
in a stream with a comma separating each field

2

J A N E ’ M I L L E

PrrpTep— G R YS [RTOUINSIN SR e T B RPURRpRIE Jeu———

I A

Notice that each new field of data requires one extra byte of
disk space for the comma.

Radio fhaek

PAGE 4 - 11

MODEL I/III COMPILER BASIC BUILDING DATA FILES
TRS-80™

Also note that a numeric field with a positive number requires
one extra byte for a leading blank before the number. However
if you output the ID as a string (IDS$):

FPIRSTS, LASTS, 1IDS$

no leading blank would be required in storing the number:

Stream input/output is best suited for VLRs, since the fields in
each record may differ in length. However, the stream method
may also be used with FLRs.

Formatted Input/Output

e g o s o - - D o b S5 s Loty T wo wop G hh R

In formatted input/output, the INPUT USING and PRINT USING
statements input and output data to the diskette. This allows
you to use the image to contrcl exactly how and where each field
of data will be stored on the disk.

For example, you could output the same data as above using the
formatted method with this image:

<HER<HERE<H

to format four characters for the first field, five for the
second, and two for the third, with each field left justified.
This is how the data would be stored:

Radie fhaek

PAGE 4 - 12

MODEL I/III COMPILER BASIC BUILDING DATA FILES

TRS-80™

Notice how each field of data is formatted to match the image
line. Since the second field only allows for five left
justified characters, the R in MILLER is truncated (deleted).

This is a good method to use when you need to be able to access
any character of data in the record. For example, this method
would make it easy to change the second character in each ID
number.

Also, this is a good way to save disk space. If each field
contains the same amount of data, the fields can be packed
together in the record with no commas separating them.

Binary Input/Output

In binary input/output, the READ and WRITE statements input and
output data to the diskette.

Numeric Data
Numeric data is stored much like it is in memory:

integers are stored in two bytes, two's complement
notation.

real numbers are stored in binary coded decimal
format. This requires a maximum of nine bytes
(the length byte plus the eight bytes for the
number -- insignificant bytes are truncated.)

For an explanation of both of these storage formats, see the
Programmers Information Section.

Integers must be whole numbers in the range of -32768 to 32767.
For example, the integers 22, 333, 4444 would be stored as
follows:

6

4444 2

22 333

-__l___ ___!-__

The first byte tells how many bytes of data are in the three
following fields. Notice how each integer requires two bytes of
storage. No extra bytes are required to separate each field.

Radio fhaek

PAGE 4 - 13

MODEL I/III COMPILER BASIC BUILDING DATA FILES

TRS-80™

The real numbers 2000 and 3333 would be stored in this format:

7 2 |44 ! 2 3 44| 33} 33
FIELD 1 FIELD 2
2000 3333

The field for the number 2000 consumes three bytes. The first
byte, 2, tells the length of the field. The second byte, 44, is
the exponent byte. The third byte, 2, contains the one
significant digit in the number.

The next field for the number 3333 begins with the length byte,
3, which says that this field is four bytes long. The second
byte, 44, is the exponent byte. The third and forth bytes
contain the four significant digits in the number, 3333.

For more information on this, refer to the Programmers
Information Section.

String Data

String data is stored in ASCII format with one byte per
character plus a length byte to give the length of the string
field.

The string data, "BINARY" and FILE" would be stored in a record
in this form:

{

-

I N l A

R, -

I

L

_—
E |

——] ——
Y | 4
|

R

F

112

-

Notice that each field contains a leading length byte.

rp———

6

Errp——

[rpvp——"

B

[Eep—_— PR

Binary input/output is the most concise way to store a file
containing largely numeric data. For example, a file containing
sales data or accounting data would be best stored using the
binary method.

Radie Shaek

PAGE 4 - 14

MODEL I/III COMPILER BASIC BUILDING DATA FILES
TRS-80™

BUILDING A SEQUENTIAL ACCESS FILE

B S ————— S T T Y

As we discussed in the overview of this chapter, you have a
choice of three methods you may use in building a sequential
access file: :

1. Stream method
2. Formatted method
3. Binary method

We will take you through the steps of building a sequential
access data file using each of these methods. You will probably
find it helpful, when going through these steps, to read about
each statement we use. A write-up of each statement is in the
Keywords Chapter of this manual.

SEQUENTIAL ACCESS
USING STREAM INPUT/OUTPUT

The stream method is the most common way of building a
sequential access file, since you dc not have to format the
length of the records in advance. We will show you how to use
this method to:

1. build the file
2. read the file
3. add to the file

Radie fhaek

PAGE 4 - 15

MODEL I/III COMPILER BASIC BUILDING DATA FILES
TRS-80™

4. wupdate the file [G wWEHT

Building the File (Output to the File)

ks s oo S Y WD WY] W W S S S o s S Wl T D A WO T W WSS WA T W Y3 s i s Tt S

When building the file, you need to write a program that will do
these four things:

1. Open the disk file with OPEN.

2. Print a data record to the disk file with PRINT #.

3. Repeat step 2 until your program has printed all the
records to the disk file, and then

4., Close the file with CLOSE.

Here is a sample program, along with a sample run of the
program, which builds the file using these four steps:

13 REM *##%% DEMO OF STREAM QUTPUT TO A SEQUENTIAL FILE *x=x

20 REM

2@ OPEN #1: "ITEM/DAT"s MODE=W: TYPE=E

48 PRINT "INPUT (1) ITEM NO. (2) NAME (3) DESCRIPTIOM OF ITEM®

5@ INPUT NO%. NAME4s DEG$.

HB PRINT #13 NO$s NAME$: DEDS

@B OPHRINT "I& THERE AMOTHER ITEM (Y/M)7"

8@ INPUT ANBWERS

98 IF ANGWERS <> "N THEN 42 ELSE CLOSE #1
#RUN

INPUT (1) ITEM NO. (2) NAME (3) DEGCRIPTION OF ITEM
7 111

7 PAPER

7 LEGAL PAD B 1/2 X 11 58 SHEETS

IS5 THERE ANOTHER ITEM (Y/N)7?

7Y

INPUT (1) ITEM NO. (2) NAME (3) DESCRIPTION OF ITEM

) PEN
7 BLUE INK BaLL POINT MEDIUM INK
I8 THERE ANOTHER ITEM (Y/N)7

7 N

3

Line 30 opens the file with the OPEN statement. (See OPEN):
~ it references it as file unit #1 (You may have several

Radie fhaek

PAGE 4 - 16

MODEL I/III COMPILER BASIC BUILDING DATA FILES
TRS-80™

PR

'Zaw» »«;%{;

files open at the same time as demonstrated later in this
section.)

- it names it with the file specification of ITEM/DAT

- it sets the MODE to W since we are writing data to the
file.

- it sets the TYPE to S for sequential access

Line 60 prints the data for one record to the file. This record
has three fields: NOS$, NAMES and DES$. Notice that the PRINT #
statement can only print one record to the disk file each time
it is executed (See PRINT to a disk file).

Line 90 sets up a loop to continue printing as many records as
you want to the disk file, and ...

When all the records are printed on the disk, line 90 closes the
file.

Reading the File (Input from the File)

S Tz — > — W Yo ——— " W " o, o ot . - >~ ——— S50 - >~ " — -~

To read all the data records you have put in your file, you need
to have your program do these five things:

1. Open the disk file with OPEN.

2. Read in a data record with INPUT #.

3. Use EOF to see if you have reached the end of the file
yet.

4. Repeat steps 2 and 3 until you have read in all the
records, and then

5. When you have reached the end of the file, close it
with CLOSE.

Here is a program, along with a sample run, which uses these
steps to read in the file which was built above:

18 REM w#¥ DEMO OF STREAM INPUT FROM A& GEQUENTIAL FILE *xx
2@ REM

3 OPEN #1s. "ITEM/DAT"s MODE=Rsy TYPE=S

40 TNPUT #1135 NO$%. NAMES. DESS

5@ IF EOF(#1) <> @ THEN %2

HB PRINT ¢ PRINT "ITEM NUMBER = "3iNO$: "NAME = "jNAMES$
78 PRINT "DERCRIFPTION OF THE ITEM @ "3 DESS
8@ GOTO 48

98 CLOSE #1

Radie fhaek

PAGE 4 - 17

MODEL I/III COMPILER BASIC BUILDING DATA FILES

TRS-80™

ITEM NUMBER = 111 NAME = PAPER
DESCRIPTION OF THE ITEM : LEGAL PAD 8 1/2 X 11 50 SHEETS

ITEM NUMBER = 222 NAME = PEN
DESCRIPTION OF THE ITEM @ BLUE INK BalLl POINT MEDIUM INK

STOP LINE 9@
*

Line 30 opens the file:

- again, it is file unit #1

- it names ITEM/DAT as the file to be opened (the file
that was created above)

- it sets the MODE to R since we are reading data from the
file

- it sets the TYPE to S for sequential

Line 40 causes your computer to INPUT (read) one data record
from the disk file. It reads all three fields of the record.
The first field is assigned to NO$, the second to NAMES, and the

third to DESS.

Line 50 checks to see if you have reached the end of the file
yet. If you have, it jumps to line 90 where the file is closed.

Line 80 sends the program back to INPUT or read another record,
and

Line 90 closes the file.

Adding to the file

v o o ol it i L S N S Al ol i e

Should you decide at a later date that you want to add some more
records to your file, you would follow a procedure almost
identical to the one discussed above in "Building the File".

The only difference is in the OPEN statement. Instead of
setting the MODE to W (write), set it to E (extend).

Here is a sample program which extends the file built above

Radie fhaek

PAGE 4 - 18

MODEL I/III COMPILER BASIC BUILDING DATA FILES
TRS-80™

%,

P
¥ o 2 g e P i
. “.':b*w%?;ﬂ;”%ﬂ E ALY T P e

named ITEM/DAT.

)

i@ REM ##% DEMO OF ADDING TO & BEQUENTIAL FILE ®#x

2B REM

3@ OPEN #1, "ITEM/DAT". MODE=Es TYPE=G

4@ PRINT "INPUT (1) ITEM NO. (23 NAME (3) DESCRIFTION OF ITEMY
5@ INPUT NO$s NAMESs DEDS

&8 PRINT #13 NO$s MaME$: DES$

78 PRINT I8 THERE ANOTHER ITEM (Y/M)7?"

8@ INPUT ANGWERS

@ IF AMEBWERS$ <> "N" THEN 48 ELSE CLOBE #1

#RUN
INPUT (13 ITEM NO. {(2) NAME (3) DEBCRIPTION OF ITEM
7 333

7 TYPEWRITER

7 TAM ELECTRIC PORTABLE BELECTRIC
18 THERE ANOTHER ITEM (Y/MN)7

7N

STOP LINE %@

Updating the File

o o "~ ——" o> - - ———_ - = o~ ———

. As we discussed in the overview of this chapter, updating a
sequential access file is a time consuming process. These are
the steps vou need to follow:

1. Open the file you want to update (file #1) with OPEN.

2. Open a second file with OPEN to write your updated
records to {(file #2).

3. Read in a data record with INPUT # from file #1.

4. Use EOF to see if you have reached the end of file #1.

5. Use PRINT # to print the updated record to file #2.

6. Repeat steps 3, 4, and 5 until you reach the end of
file #1, and then

7. Close file #1 with CLOSE.

8. Kill file #1.

9. Close file #2 with CLOSE.

Here is a sample program which updates a sequential access file
using these nine steps:

i@ REM ##% DEMO OF UPDATING A SEQUENTIAL FILE #u%x
28 HEM

3@ OPEN #1s "ITEM/DAT"., MODE=Rs TYPE=S

4@ OPEN #2s "NEWITEM/DATYs MODE=W: TYPE=G

5@ INPUT #13 NO%s NAMES$: DEBS

& IF EQF{#1; = —~1 THEN 148
. 78 PRINYT : PRINT "ITEM NUMBER = ®:NO%s "NAME = *:MNAMES
®
Badie fhask

PAGE 4 - 19

MODEL I/III COMPILER BASIC BUILDING DATA FILES

TRS-80™ -
/ SEOULENT R) .
8@ PRINT "DESCRIPTION OF THE ITEM : "3;DES$

9@ PRINT : PRINT "DO YOU WANT TO CHANGE THIS INFORMATION (Y/N)"s

120 INPUT ANSWERS$

1180 IF ANSWERS = "N" THEN 140

120 PRINT "INPUT (1) ITEM NO. (2) NAME (3) DESCRIPTION OF ITEM"

13@ INPUT NO%s NAME$s DEL®

14@ PRINT #Z3 NO%s NAME$s DESS

15%@ GOTO 50

160 CLOSE #1

178 KILL "ITEM/DAT"

180 CLOSE #2

ITEM NUMBER = 111 MAME = PAPER
DESCRIPTION OF THE ITEM @ LEGaAL PAD 8 1/2 X 11 58 SHEETS

DO YOU WANT TO CHANGE THIS INFORMATION (Y/N)7 N

ITEM NUMBER = 2322 MAME = PEN
DESCRIPTION OF THE ITEM @ BLUE INK BALL POINT MEDIUM INK

DO YOU WANT TO CHANGE THIS INFORMATION (Y/RN)7 Y
INPUT (1) ITEM NO. (Z) NAME (3) DESCRIPTION OF ITEM"
7 EEE

7 PEN

7 BLACK INK BALL POINT FINE LINE

ITEM NUMBER = 333 NAME = TYPEWRITER
DESCRIPTION OF THE ITEM @ TaN ELECTRIC PORTABLE SELECTRIC

DO YOU WANT TO CHANGE THIS INFORMATION (Y/N)7 N

Line 30 opens the file to be updated:

~ it references the file as file #1

- it names ITEM/DAT as the file to be opened

- it sets the MODE to R, since we will be reading data
records from the file

- it sets the TYPE to S

Line 40 opens the second file which will contain the updated
information:

- it references it as file #2

- it names this new file "NEWITEM/DAT"

- it sets the MODE to W, since we will be writing the
updated data records to this file

- it sets the TYPE to S

Radie fhaek

PAGE 4 - 20

MODEL I/III COMPILER BASIC BUILDING DATA FILES

TRS-80™

= . ; *
I 4 s i AT
P el lnlA AT

Liine 50 INPUTs {readS) one data record from file #1.

Line 60 checks to see if we have reached the end of file #1. If
so, it sends program control to lines 160~180 where the two

files are closed.
Line 140 PRINTS (writes) the updated record to file #2.

Line 150 sends the program back to read the next record, update
it, and write the updated record to disk.

Line 160 closes file #1.

Line 170 kills file #1 since this file contains the old
out—~of-date information.

Line 180 closes the new file.

Notice that after running this program, you have created a new
file named NEWITEM/DAT which contains your information.

Badie fhaek

PAGE 4 - 21

MODEL I/III COMPILER BASIC BUILDING DATA FILES
TRS-80™ -

et o
\ SEDUF

SEQUENTIAL ACCESS
USING FORMATTED INPUT/OUTPUT

Since the formatted method requires that you set the length of
records in advance, it does not allow you to take advantage of
the flexible record length that sequential access offers.
However, you are still able to take advantage of the compactness
of a sequential access file.

The steps for formatted input/output are identical to sequential
input/output, except you need to replace PRINT # with PRINT
USING # and INPUT # with INPUT USING #.

Sample programs:

i@ REM ¥%¥% DEMO OF FORMATTED OUTPUT TO A& SEQUENTIAL FILE *xx
2B REM

3@ OPEN #1s "ITEM/DAT"s MODE=Ws TYPE=H

4@ PRINT "INPUT (1) ITEM NO. (2) NAME (3) DESCRIPTION OF ITEM®
58 INPUT NO$s NAME®$s DEGS$

&HB PRINT USING #135 288. NO$s NaME$s DESS

7@ PRINT "I8 THERE ANOTHER ITEM (Y/MN) 7"

80 INPUT ANGWER$

Q@ IF ANSWER$ <& "N" THEN 40 ELSE CLOSE #1
ZO0 s JHHHEEH BB RS
#RUN
INPUT (1) ITEM NO. {(2) NAME (3) DESCRIPTION OF ITEM
7 111
7 PAPER

7 OLEGAL PAD 8 1/72 X 11 5@ BHEETS

I8 THERE AMNMOTHER ITEM (Y/N)7?

7Y

INFUT (1) ITEM NO. (2} NaME (3) DESCRIPTION OF ITEM
T O2EE

7 PEN

7 BLUE INK BaALL POINT MEDIUM POINT

I8 THERE AMOTHER ITEM (Y/NJ7

7N

Badie fhaek

PAGE 4 - 22

MODEL I/III COMPILER BASIC BUILDING DATA FILES
TRS-80™

i, LB IENT T Hl ;
18 REM #%% DEMO OF FORMATTED INPUT FROM A SEQUENTIAL FILE w#=%

=8 REM
3@ OPEN #1s "ITEM/DAT": MODE=R: TYPE=E
4@ INPUT USING #1353 108s NO$: MNAMES. DESS
50 IF EOF(#1) < B THEM 98
60 PRINT ¢ PRINT "ITEM NUMBER = "3NO%:s "NAME = " 31pNAMES
7@ PRINT "DESCRIPTIOGN OF THE ITEM @ "3 DES%
80 GOTO 48
9B CLOBE #1
180 < HE HHHFH ERIREHGFRSRREH
FHUN

ITEM NUMBER = 111 NAME = PAPER
DEGCRIPTION OF THE ITEM : LEGAL PAD 8 1/2

ITEM NUMBER = ZZZ NAME = PEN
DESCRIPTION OF THE ITEM @ BLUE INK BALL P

Radie fhaek

PAGE 4 - 23

MODEL I/III COMPILER BASIC BUILDING DATA FILES
TRS-80™

e Y E ST
%1 %%;/ @&i}f Fie

9]

SEQUENTIAL ACCESS
USING BINARY INPUT/OUTPUT

To use the binary input/output method, use the same procedures

as the stream input/output method, except replace PRINT # with
WRITE and INPUT # with READ.

Sample Programs:

12 REM *%% DEMO OF BINARY OUTPUT TO A SEQUENTIAL FILE %% 20 REM
30 OPEN #1s "SALES/DAT"s MODE=Ws TYPE=H8
4@ PRINT "INPUT (1) ITEM NO. (2) JAN SALES (3) FEB SALES (4) MAR SALES

5@ INPUT NOYs JANs FEBs MAR

4@ WRITE #1353 NO%Zs JANs FEBs MAR

78 PRINT "IS THERE ANOTHER ITEM (Y/N)";3

8@ INPUT ANSWER$

9@ IF ANSWER$ <> "N" THEN 4@ ELSE CLOSE #1
*RUN
INPUT (1) ITEM NO. (2) JAN SALES (3) FEB SALES (4) MAR SALES
7 111 :
7 1000
7 2000 .
7 3000

I8 THERE ANOTHER ITEM (Y/N)7 Y
INPUT (1) ITEM NO. (2) JAN SALES (3) FEP SALES (4) MAR BALES

7 2R
7 1500

7 2000

7 2500 ,

IS THERE ANOTHER ITEM (Y/N)7 N
STOP LINE 90

*

Radio fhaek

PAGE 4 - 24

MODEL I/III COMPILER BASIC BUILDING DATA FILES
TRS-80™

’%'a

g g

[CEQUENTITS

1@ REM *%% DEMO OF BINARY INPUT FROM A SEQUENTIAL FILE *®%
20 REM

38 OPEN #1s "SALES/DAT"y MODE=Rs TYPE=E

4@ PRINT *ITEM NO"s "JAN SALES"s "FEB SALESY: "MAR GALES”

5@ READ #13 NOXs JANs FEBPs MAR

6@ IF EOF(#1) <> @ THEN 90

78 PRINT NOZs JANs FEBs MAR

8@ GOTO 50
P8 CLOSE #1
*RUN
ITEM NO JAN SALES FER SALES MAR SALES
111 1 20a =boa 3000
222 1500 200a =500

STOP LINE 20
&

Radio fhaek

PAGE 4 - 25

MODEL I/III COMPILER BASIC BUILDING DATA FILES

o

TRS-80®

BUILDING A DIRECT ACCESS FILE

o amn W S S D AR R R i VAT S TS TS R R TN D D I R R WA S . S e

As with seguential access, you may either use the stream,
formatted, or binary methods to input and output data to a
direct access file. We will discuss the formatted method first.

Again, in going through these sample programs, you will find it
helpful to read about the keywords we use in the Keywords
Chapter of this manual.

DIRECT ACCESS
USING FORMATTED INPUT/CUTPUT

Formatted input/output is a common way to build direct access
files, since it will ensure that each record has the same length
and is in the same format.

Building the file

o s I G S S D ST T K RS S ST 0T

Building a direct access file is actually very similar to the
procedure of building a sequential file. The difference is:

- you must specify the length of each record in the COPEN
statement
- you must assign each record a record number

Radie fhaek

PAGE 4 - 26

MODEL I/III COMPILER BASIC BUILDING DATA FILES

These are the procedures to use:

1. Open the disk file with OPEN.

2. Print a data record to the disk file with PRINT USING
#, specifying its record number.

3. Repeat step 2 until you your program has ocutput all
records desired to the disk file, and

4, Close the file with CLOSE.

Here is a sample program following these procedures:

18 REM #¥% DEMO OF FORMATTED QUTRUT ToO A DIRECT FILE ¥x#
20 REM

2@ OPEN #1. "LIST/DATY: MODE=Ws TYPE=D: LENGTH=3Z

44 X =1

538 PRINT @ INPUT FROMPT="LAGET NMaAME 7°3 LNAMES

32 INPUT PROMPT="FIRET NAME 7"35 FpMNAMES

54 INPUT PROMPT="ADDREEES 73 ADDS

7@ PRINT USING #1s RKEY=X3 110+ LMNAMES: FNAMES$: ADDE

8@ INPUT PROMPT="IS THERE ANOTHER ADDRESS (Y/N) 7": ANSWERS

108 IF ANGWERS = "N THEN CLOSBE #1 ELSE X = X + 1 @ GOTO 56
110 5 THHHHEHRHE THESHRE THR R SR SRR
*#RUN

LAST NAME 7HARRISON

FIRST NAME 7PATRICIA

ADDRESS 71513 NORTH MOCKINGBIRD LANE
15 THERE ANOTHER ADDRESS (Y/N) 7Y

LAST NAME 7J0HNSON

FIRST NaME 7GEORGE

ADDRESS 71811 S0UTH HAMPTON

IS THERE ANOTHER ADDRESS (Y/N) 7N

Line 110 is the image line. It determines how each record's
data will be formatted on the diskette. 1In this program, each
record will be divided into three fields. The < character marks
the beginning of each field:

the first field has 10 characters;

the second, 7;

the third, 15.
for a total of 32 characters in each record.

Line 30 opens the file with OPEN:

Radie fhaek

PAGE 4 - 27

MODEL I/III COMPILER BASIC BUILDING DATA FILES

e TRE-B0) ™ e
/ DIRECT facESS)/
i ¥ #

- it references the file as file unit %1

~ it names the file "LIST/DAT"

- it sets the MODE to W (write)

- it sets the TYPE to D (direct)

- it sets the LENGTH (record length) to 32 characters in
each record.

Line 70 outputs a record to the disk file using the format set
on line 110. ©Notice that in direct access, this PRINT USING #
statement must specify a KEY (record number) for each record.

Line 100:
- ¢closes the file if the operator does not want to output

any more records, or
- increments the record number by 1 and sends the program
back to print the next record to the disk file.

Reading the File (Input from the File)

s o WD o (Y O s R s RS s RS T T S A O D SUD S R T S o S I L O MR U D WD S 5

To read every record in the file, you may use the same
procedures that you would use in sequential access, except:

- in the OPEN statement, you must specify the record length
- in the INPUT USING # statement, you must specify the KEY
(record number) you want to input from the file

These are the procedures:

1. Open the disk file with OPEN, specifying the record
iength.
2. Read in a data record with PRINT USING #, specifying

the record number.
3. Use EOF to see if you have reached the end of the file

vet.
4. Repeat steps 2 and 3 until you have read in all the

records, and then
5. When you have reached the end of the file, close it

with CLOSE.

Here is a sample program following these procedures:

%@ REM ##% DEMO OF FS?MAT?%D INPUT FROM A DIRECT FILE ##%
%g gigN #ls: "LIST/DAT" s MODE=Rs TYPE=Ds LENGTH=3ZZ
gg ?N;U; UZDING #1: KEY=X3 1368 LNaMES$s FNAME$: ADDS
&5 IF EOF(#1)Y < § THEN 138G
Radio fhaek

PAGE 4 - 28

MODEL I/III COMPILER BASIC BUILDING DATA FILES

TRS-80™ -
{ 1T _ T 55
7@ PRINT : PRINT "RECORD #"3 X \Diazel hesBsS)
BO PRINT LNAME$:"s " sFMAMESs s s ADDS

@ X = X + 1 @ QOTO &8
1@ CLOBE #1

Ré%@ POHHHHHHARH B R R R RN
*

RECORD # 1
HARRISON s PATRICI
1513 NORTH MOCK

RECORD & 2

JOHNSON » GEORGE

1811 SOUTH HAMP
Line 130 is the image line determining what format to use in
inputting each record from the disk file. This is the same
image that was used in building the file.

Line 30 opens the file with OPEN:
it references it as file unit #1
~ it names it LIST/DAT
- it sets the MODE to R (read)
- it sets the TYPE to D (direct)
- it sets the LENGTH to 32 characters per record

Line 60 inputs record # X from disk, using the formatted image
set in line 30. It assigns the three fields of data to the
variables LNAMES$, FNAMES$, and ADDS.

Line 65 checks to see if you have reached the end of the file
yet. If s0, it jumps to line 100 where the file is closed.

Line 90 increments the record # by one and sends the program
back to input the next record from disk.

Updating and Adding to the File

——————— - - " " — ———— T _—> > o] o T i s

Direct access is the easiest way to update a file. Here are the
procedures:

1. Open the file with OPEN, specifying the record length.
2. By specifying the record number, you may then do one of
the following:
a. input the record from the disk file by
using INPUT USING #
b. delete the record from disk file with
DELETE #, or
c. output new data to the disk file, for

Radio fhaek

PAGE 4 - 29

MODEL I/III COMPILER BASIC BUILDING DATA FILES
TRS-80™.-

i

1

1 REST feeRSL)

o

that record number with PRINT USING #
3. Repeat step 2 until you have finished updating the
file, and then
4. Close the file with CLOSE.

Here is a sample program updating a direct access file:

i@ REM *#%% DEMO OF UPDATING & FORMATTED DIRECT FILE %%
2@ REM

32 OPEN #1, "LIST/DAT"s MODE=Us TYPE=Ds LENGTH=3Z

4@ PRINT ¢ PRINT "(1) DISPLAY RECORD" @ PRINT "<2) DELETE RECORD®
5@ PRINT "(3) ADD/CHANGE" : PRINT "{(4) CLOSE FILE"

H@B INPUT PROMPT="SELECT ONE OF THE ABOVE "3 8§

7@ INPUT PROMPT="RECORD NO (@ IF CLOSING FILE) 73 R

8@ ON & GOTO 118y 160 200, 270

8 REM
188 REM
11@ REM *¥%*% (1) DISPLAY RECORD ROUTINE x%%

120 INPUT USING #1. KEY=R3; 29@: LNAME$s FNAME$: ADD%
13@ PRINT LNAME$:":"3FNAME$s s ADDS : GOTO 4@
140 REM
15@ REM

160 REM *#%% () DELETE RECORD ROUTINE #%%

178 DELETE #1. KEY=R: GOTO 4@

18@ REM

198 REM
200 REM *¥¥% (3) ADD/CHANGE RECORD ROUTINE #¥%%
21@ INPUT PROMPT="LAST NAME 7"3; LNAMES
228 INPUT PROMPT="FIRGST NAME 7"3: FNAMES
233G OINPUT PROMPT="ADDRESS 7"35 ADD%
240 PRINT USING #1s KEY=R3; 29@: LNAME$: FNAME#%s ADD$ = GOTO 48
230 REM
268 REM
278 REM *¥%% (4) CLOSE FILE #x%

288 ClLODE #1
290 5 CHEHEHEEEE < HH R SRR SRR

Here is a sample of what might happen when this program is RUN:

#RHUN

(1) DISPLAY RECORD
(&) DELETE RECORD
(32) ADD/CHANGE

(4) CLOSBE FILE

Radio fhaek

PAGE 4 - 30

MODEL I/III COMPILER BASIC BUILDING DATA FILES

TRS-80™

[DiRECT AcerSS)

SELECT ONE OF THE AROVE 3
RECORD NO (8 IF CLOBING FILE)Y 73
LAST NAME 7ALEXANDER

FIRST NAME 7MARIA

ADDRESE 733332 ELK GROVE

{1) DISPLAY RECORD

{Z) DELETE RECORD

{3y ADD/CHANGE

{4) CLOSE FILE

SELECT ONE OF THE ABROVE 1
RECORD NO (@ IF CLOSING FILE)Y 73
ALEYANDER «+MARIA

3333 ELK GROVE

(1) DISPLAY RECORD

(&) DELETE RECORD

(33 ADD/CHANGE

(4) CLOBE FILE

SELECT ONE OF THE AROVE 4
RECORD nNO (@ IF CLOBING FILE) 70

Line 290 is the image line. This is format which was used when
building the file.

Line 30 opens the file:
it references it as file #1
- it names it LIST/DAT
- it sets the MODE to U (update)
- it sets the TYPE to D (direct)
- it sets the LENGTH to 32 characters per record

Line 70 asks the operator to input a record number (KEY)

Line 80 sends the program to the Display Routine, Delete
Routine, Add/Change Routine, or to close the file, depending on
the operator's choice.

Line 120 inputs the record number the operator selected using
the format set in line 290.

Line 170 deletes the record number the operatcr selected.

Line 240 prints new data to the record number the operator
selected.

Line 280 closes the file.

Radio fhaek

PAGE 4 - 31

MODEL I/III COMPILER BASIC BUILDING DATA FILES

TRS-80™

/fﬁzgggrgﬁﬁfééj

DIRECT ACCESS
USING STREAM INPUT/OUTPUT

To use the stream input/output method, follow the procedures of
the formatted method replacing PRINT USING # with PRINT # and
INPUT USING # with INPUT #.

To determine the length of each record you must allot:
- one byte for each character of data
- one byte for each new field of data
- one byte preceeding each positive number

Sample programs:

1@ REM *%% DEMO OF STREAM OQUTPUT TO A DIRECT FILE #x%%
2@ REM

30 OPEN #1: "NAME/DAT"s: MODE=Ws TYPE=Ds LENGTH=8

48 X = 1

5@ PRINT : PRINT "FIRST INITIAL 7"

6@ FNAMES = INPUT$(1)

70 PRINT “LAST NAME 7"3

8@ LNAME$ = INPUT$(5)

0 PRINT #1s KEY=X3; FNAME$: LNAME®$

12@ INPUT PROMPT="15 THERE ANOTHER NAME (Y/N) 7"3; ANSWER%

11@ IF ANSWER® = "N" THEN CLOSE #1 ELSE X = X + 1 t GOT(O 50
*RUN

FIRBT INITIAL M
LAST NAME 7WAGHI
IS THERE ANOTHER NAME (Y/N) 7Y

FIRBT INITIAL 7C
LAST NAME 7MILLE
IS THERE ANOTHER NAME {(Y/N) 7Y

FIRST INITIAL 7J

LAST NAME 78MITH

IS THERE ANOTHER NAME (Y/N) 7N
STOP LINE 110

*

Radie fhaek

PAGE 4 - 32

MODEL I/III COMPILER BASIC

BUILDING DATA FILES

TRS-80®

[DIRECT pocEss)

#¥% DEMO OF STREAM INPUT FROM A DIRECT FILE #*%x

10 REM
@ REM
320 OPEN #1s "NAME/DATY: MODE=R: TYPE=Ds LENGTH=
40 X = 1
&5 INPUT #1s KEY=X: FNAME%$: LNAMES$
&8 IF EOF(#1) <> @ THEN 128
7¢% PRINT 3 PRINT "RECORD #": X
B@ PRINT FNAMES: ", ": LMAMES
110 X = X + 1 1 GOTO &5
{120 CLOSE #1
¥RUN
RECORD # 1
M. WASHI
RECORD # =
C. MILLE
RECORD # 3
J. SMITH
TRSDOS ERROR 29 LINE &5
*
@
Radie fhaek

PAGE 4 - 33

MODEL I/III COMPILER BASIC BUILDING DATA FILES
TRS-80"™

(DIRE oT ACCEsS)

S

DIRECT ACCESS
USING BINARY INPUT/OUTPUT

To use the binary input/output method, follow the procedures of
the formattted method replacing PRINT USING # with WRITE and

INPUT USING # with READ.

Determining the length of each record is a little more complex.
You should allot:

2 for each integer (integers are
whole numbers beteen -32768 and
32767)

3 -9 for each real number:
1 byte for the length byte
1 byte for the exponent byte
1l byte for each two signigicant”
digits

1 for the beginning length byte

See the Overview of this chapter for more information.

Sample programs:

10 REM *¥¥ DEMO OF BINARY OUTPUT TO A DIRECT FILE #%x

28 REM

3@ INTEGER

48 OPEN #1s "GALES/DAT"s MODE=Ws: TYPE=Ds LENGTH=%

50 X=1

&B INPUT PROMPT "ITEM NGO, 7"35 NO @ INPUT PROMPT = ®JAN SALES 7"3 JaAN

o

783 INPUT PROMPT "FEB SALES 7"3 FEB : INPUT PROMPT = "MAR SALES 7"35 MAR
82 WRITE #1s KEY=X3 NOs JANs FEBs MAR
@ PRINT "IS THERE ANOTHER ITEM (Y/N)"3

188 INPUT ANSWER%
112 IF ANSWER$ = "N" THEN CLOSE #1 ELSE X = X + 1 @ GOTO 4@

Radie fhaek

PAGE 4 - 34

MODEL I/III COMPILER BASIC BUILDING DATA FILES

TRS-80™

*RUN

(DIRECT AccECS)

ITEM NO. 7111

JAN SALES 73000

FEE SALES 72433

MAR BALES 753543

I& THERE ANOTHER ITEM (Y/N}7 Y
ITEM NO. 7222

JAN SALES 79987

FEB BALES 78888

MAR SALES 77987

IS THERE ANOTHER ITEM (Y/N)7 N
8TOP LINE 110

*

12
20
30
40
50
=17

REM *%% DEMO OF BINARY INPUT FROM A DIRECT FILE %%
REM

INTEGER

OPEN #1s "SALES/DAT"s MODE=Rs TYPE=D: LENGTH=9

X=1

PRINT "ITEM NO."s “"JAN BALES"s "FER SALES": "MAR SALES®

78 READ #1s: KEY=X3 NOs JANs FEBs MAR
80 IF EOF(#1) <> @ THEN 110 gog = - 1
9@ PRINT NOs JANs FEB. MAR
10@ X = X + 1 & GOTO 70
110 CLOSE #1
#RUN
ITEM NO. JAN BALES FERE SALES MAR SALES
111 3000 2433 5543
222 987 8888 7987
®
Radio fhaek

PAGE 4 - 35

MODEL I/III COMPILER BASIC BUILDING DATA FILES
TRS-80™

BUILDING AN INDEXED ACCESS (ISAM) FILE

s — - —————— - " . — — " . — - -~ -, - - - - - - -

To build an indexed access file, you may use the same three

input/output methods that were shown with sequential and direct

access files: formatted, stream, and binary. We will only show

the formatted method in this chapter, but remember that the

other methods are available to you. .

MODES ¥ W/
&
v

. e e
TyprPe s = L

INDEXED ACCESS FILE
USING FORMATTED INPUT/OUTPUT

Building the File

s s S - - 1 o T I ST

To build the file, use the same procedures that were shown in
building a formatted direct access file, except:

- In the OPEN statement, you must specify the maximum
number of characters you will use for each KEY.

- In the PRINT USING # statement, you must assign each
record a KEY rather than a record number. This key may be any
name you choose.

Here is a sample program:

Radio fhaek

PAGE 4 - 36

MODEL I/III COMPILER BASIC BUILDING DATA FILES
TRS-80™

£ MDER

1@ REM *#%¥% DEMO OF FORMATTED OUTPUT TO AN INDEXED FILE #%x
2@ REM
3% OPEN #1s "LIST/DATYs MODE=W: TYPE=Is LENGTH=3Zs KEY=3
4% PRINT @ INPUT PROMPT="LABT NAME 7"5 LNOMES
5@ INPUT PROMPT="FIRST N&ME 7%3 FNAMES$
&8 INPUT PROMPT="ADDRESS 7'35 ADD%
7@ PRINT "KEY 7"3:@ Ke=INPUT$(3)
B0 PRINT USING #1: KEY=K$3: 118s LKNAMES, FNAMES: ADDS%
@ OINPUT PROMPT="I8 THERE ANOTHER ADDRESE (Y/N) 73 ANSWERS$
188 IF ANBWERS="N" THEN CLOSE #1 ELSE GOTO 48
110 s CHHHHHEHHE HEHH S CHRR S HH R S HP HHH

Line 110 is the image line. It formats the data output to each
record in three fields containing 10, 7, and 15 characters for a
total of 32 characters.

Line 30 opens the file:
it references it as file unit #1
- it names the file "LIST/DAT"
- it sets the MODE to W (write)
- it sets the TYPE to I (indexed)
- it sets the record LENGTH to 32
- it sets the length of each KEY to 3 characters

Line 70 asks the operator to specify a key name to use in
referencing the file.

Line 80 prints the record to disk file.

Line 100:
closes the file if the operator is finished or
goes back to print another record to the disk file.

Reading the File

s v " - T - T > = -

To read every record in the file, follow the same procedures
that were shown in reading a formatted direct access file,

except:

- In the OPEN statement, yvou must specify the number of
characters in the KEY.

- In the INPUT USING # statement, you may leave out the key
name.,

- You may use a special function named KEY$ to read the
name of the key for each record.

Radie fhaek

PAGE 4 - 37

MODEL I/III COMPILER BASIC BUILDING DATA FILES

TRS-80 ™ —— -
i;ﬁ?ﬁakg ‘.’
Sample program:
1@ REM ##% DEMO OF FORMATTED INPUT FROM AN INDEXED FILE #%+%

28 REM
3@ OPEN #1s "LIBT/DAT®"s MODE=Rs TYPE=I: LENGTH=3Z: KEY=3

40 INPUT USING #1: 2080, LNAME$s FNAME$s ADD$
50 IF EOF(#1) <> B8 THEN 9@

68 PRINT

7@ PRINT LNaME®$:"9¢ "3 FNAME$s::s ADD$

8@ GOTO 40
28 CLOSE #1
208 3 <HESHEREEBCEBBBRECHERBRRRBEHBN R

Updating the File

o s T S D T D D S ST < D G

To update the file, you follow the same procedures as shown in
updating a formatted direct access file, except:

- In the OPEN statement, you must specify the number of

characters in the KEY.
- You must specify the name of the KEY in the INPUT USING '

#, PRINT USING # and DELETE # statements.

Sample program:

18 REM *%% DEMO OF UPDATING A FORMATTED INDEXED FILE %%

2@ REM

3@ OPEN #1s "LIST/DAT"s MODE=Us TYPE=Is LENGTH=3Zs; KEY=3

4@ PRINT @ PRINT "{1) DISPLAY RECORD" : PRINT "(2) DELETE RECORD"

3@ PRINT "(3) ADD/CHANGE" : PRINT "(4) CLOSE FILE®
68 INPUT PROMPT="GELECT ONE OF THE ABOVE "3 &

78 INPUT PROMPT="KEY 7"3K$%$

88 ON & GOTO 110s 168. 288, 278

98 REHM

188 REM

118 REM #%% (1) DISPLAY RECORD ROUTINE #x#%

128 INPUT UBING #1, KEY=K$; 290, LNAMESs FNaME$s ADDS
138 PRINT LNAME$:"s "3FNAME%ss::ADD$: GOTO 40

146 REHM

158 REM

168 REM ##% (2} DELETE RECORD ROUTINE %%

178 DELETE $#1: KEY=K$: GOTO 48

188 REM

Radie fhaek

PAGE 4 - 38

MODEL

I/111

COMPILER BASIC BUILDING DATA FILES

199
=288
21@
22
230
248
258
268
278
280
298

REM
REM
INPUT
INPUT
INPUT
PRINT
REM
REM
REM
CLOBE

TRS-80™ :

##% (3) ADD/CHANGE RECORD ROUTINE #%%
PROMPT="LAST NAME 7%3 LNAMES
PROMPT="FIRST NAME 7"35 FNAME®
PROMPT="ADDRESS 7"3; ADD%
USING #1s KEY=K$3; 298, LNAME$: FNAME$. ADD$: GUTO 40

*#%% (43 CLOSE FILE %%%
#1

${HEHHFHERUCHEHBFECHHEHRR R REHRE

Radie fhaek

PAGE 4 ~ 39

TRS-80™

hhkkkhkhkhhkkhhkhhkhhhhhkhhhhhhkhhhkhhkhkhhkhkhkkkkhhik

Chapter 5

*
% *
* %
* SEGMENTING PROGRAMS *
% *
d %

kkhkkhkhkkhdhkhkhkhkhhkhhhhkhkikhkhkhhhhhkhkhkkkkkkkk

Radio fhaek

MODEL I/III COMPILER BASIC SEGMENTING PROGRAMS

TRS-80™

WHY SEGMENT PROGRAMS

The BASIC Compiler offers two ways of segmenting long and
complicated programs intc shorter, more manageable programs:

1. Subprograms are high powered subroutines which act on
data stored under different variable names. Like subroutines,
they are called from the main program, executed, and return back
to the main program.*

Subprograms are helpful if you are performing the same
complicated operations on different variables repeatedly in
different parts of your program. For example, a subprogram that
draws graphs could be called many times from the program. Each
time, it would be sent different data.

2. Program chaining is a method of breaking a very large
program into smaller programs which will each load into memory
and execute separately. This is a solution when a program
requires too much memory to execute.

* A subprogram may also be called from another subprogram.
However, they may not be recursive (that is, a subprogram may
not call itself).

OUTLINE FOR CHAPTER 5
SEGMENTING PROGRAMS

I. How to Build a Subprogram

A. How to Pass All Types of Data

B. Storing Subprograms

C. Calling Assembly Language Programs
II. How to Chain Programs

III. Subprograms VS. Program Chains

Radio fhaek

PAGE 5 - 1

MODEL I/III COMPILER BASIC SEGMENTING PROGRAMS
TRS-80™

HOW TO BUILD A SUBPROGRAM

All subprograms must be called from the main program with the
CALL statement. Normally, yvou will want the CALL statement to
"pass" data to the subprogram. For example:

CALL "ANNUAL"; F

calls a subprogram named ANNUAL and passes the data stored in F
to the subprogram.

The subprogram must begin with a SUB statement which identifies
it. If the subprogram is being passed data, this statement must
contain a variable name which can temporarily store the data.
For example:

SUB "ANNUAL"; X

begins the ANNUAL subprogram. The data in F is passed to the
subprogram, which temporarily stores it as X. Here is the
entire subprogram:

100 SUB "ANNUAL"; X
110 X = X * 52
120 SUBEND

Notice that a subprogram must always end with a SUBEND
statement. The malin program must always end with an END
statement. Here 1s the main program and the subprogram:

5 X 5

10 F 100

20 CALL "ANNUAL"; P
30 PRINT X, F

40 END
100 SUB "ANNUAL"; X
110 X = X * 52
120 SUBEND

o

Here, the main program passes the value of 100, which is stored
in F, to the subprogram. The subprogram temporarily stores 100
in X, performs its operation on X and passes the resulting value
of 5200 back to the variable F in the main program. When
instructed to PRINT X and ¥, the main program prints:

5 5200

Notice that the subprogram's variable X had no effect on the

Radie fhaek

PAGE 5 - 2

MODEL I/III COMPILER BASIC SEGMENTING PROGRAMS

TRS-80™

main programs's variable X. This is because subprogram and main
program variables are stored separately. The subprogram only
temporarily stores and acts on the value which is passed to it

- B,
Main Program Sub Program
s 3o SUB
CALL -
%z,
END Ly SUB END

The same subprogram may be called repeatedly in the program,
being passed different values each time. For example:

%

10 F =100 : G =52.25 : E = 26.50
20 CALL "ANNUAL"; F
30 CALL "ANNUAL"; G
40 CALL "ANNUAL"; E
50 PRINT F, G, E
60 END
100 SUB "ANNUAL"; X
110 X =X * 52
120 SUBEND

When executed, this program prints:

5200 2717 1378

One CALL statement can pass several different variables to a
subprogram. For example:

10 MONTHS = "JANUARY™
30 DAY% = 5
50 CALL "CAL"; MONTHS, DAYS
60 PRINT MONTHS: DAYS%
70 END
90 SUB "CAL": AS, B%
100 AS$ = SEGS$(AS, 1, 3)
110 B% = Bg + 7

Radie Shaek

PAGE 5 - 3

MODEL I/III COMPILER BASIC SEGMENTING PROGRAMS

TRS-80™

120 SUBEND

Notice that the variable types in the SUB statement (line 90)
match the variables passed by the CALL statement (line 50). 1In
this particular program, CALL and SUB list the string variable

first and the integer variable second.
When executed, the program prints:
JAN 12

Subprograms may be sent the contents of an entire array. For
example:

CALL "GRAPH"; A()

calls the subprogram GRAPH and passes the entire contents of
array A to the subprogram.

SUB "GRAPH"; X({)

begins the subprogram GRAPH. The entire contents of array A are
temporarily stored in the subprogram as array X.

Here is a program which passes array data to a subprogram:

5 DIM A{3)
10 DATA 5, 10, 15
20 READ A(l), A(2), A(3)
30 CALL "GRAPH"; A(), "GRAPH"
40 END
50 SUB "GRAPH"; X(), ¥$
60 PRINT VY$
70 FOR I = 1 TO 3
75 READ %$: PRINT Z$;
80 PRINT STRINGS(X(I), "X"); X(I)

90 NEXT I
95 DATA "MON", "TUES", "WED"™
100 SUBEND

Notice how the subprogram GRAPH beginning in line 50 has its own
DATA statement {(line 95). This cannot be read by the main
program. Nor can the main program's DATA statement (line 5} be
read by the subprogram. This is because before being executed,
the main program and the subprogram are compiled separately.

You may pass the entire contents of a two dimension array like
this:

CALL "TWO"; A(,)

Radie Shaek

PAGE 5 - 4

MODEL I/III COMPILER BASIC SEGMENTING PROGRAMS

TRS-80™

The subprogram needs a two dimensional array variable name to
accept the contents of array A, such as:

SUB "TWO": X{(,)

HOW TO PASS ALL TYPES OF DATA

The table on the next page shows how to match up the data in the
CALL and SUB statement. The first column shows the type of data
you may pass from the main program in a CALL statement. The
second column shows the accompanying type of variable which must
be in the SUB statement of the subprogram to receive this data.

o —— . —h T - — V> T D 7o s 2 D o T o S | 3 T S o R Sl D D OB N e s D R D S S LD W R SRS sk D T O R e s i S VRS M s e e e

DATA PASSED FROM THE VARIABLE RECEIVER IN
MAIN PROGRAM SUBPROGRAM
| numeric expression | numeric variable
~ CALL "SUBPROG"; 14 / 3 | SUB "SUBPROG": 5 ~
;,CALL "SUBPROG"; 14 3 ~;SUB‘“SGBPRQG“ s%,tk

numerlc varlable
SUB "SUBPROG"; S
SUB "SUBPROG"; S%

numerlc varlable contentsk
CALL "SUBPROG"; M
CALL "SUBPROG": M$%

_string variable

_ string constant contents .
| SUB "SUBPROG"; S$

.;CAzL‘“SUBPROG" "EXAMPLE"

strlng varlable

strlng varlable
SUB "SUBPROG"; S$

CALL "SUBPROG"; MS$

| entire one-dimensional | empty one«dimensxanal‘
;Tnumerlc array contents:;kf;f‘%~;,numerlc array -
SHB #SUBFRQG“e S%{k)

empty two dimensicnal
numeric array

SUB "SUBPROG"; s ,)
SUB "SUBPROG"; M%(,)

entlre two dlmen51ona1
numeric array contents
CALL "SUBPROG"; M(,)
CALL "SUBPROG"; M%(,)

onte of n

MODEL I/III COMPILER BASIC

entire one-dimensiocnal
string array contents

CALL "SUBPROG"; MS{)

TRS-80™

SEGMENTING PROGRAMS

empty one-dimensional
string array
SUB "SUBPROG"; S${)

contents of one string
array element

CALL "SUBPROG"; M$ (1)
CALL "SUBPROG"; MS$(l,1)

string subscripted
variable

SUB "SUBPROG"; S$
SUB "SUBPROG"; S$

kL R T ST SRR ———————————— e L T R —a—

PAGE

Radio fhaek

- 6

2

MODEL I/III COMPILER BASIC SEGMENTING PROGRAMS

TRS-80™

STORING SUBPROGRAMS

Subprograms may either be SAVEd or COMPILEd as part of the main
program or as a separate program. If they are stored
separately, they must be loaded along with the main program.

If the subprogram and main program were both SAVEd separately as
BASIC prr jrams, use the APPEND command to load the subprogram.
For exam .e:

OLD MAINPRG/BAS
Loads the main BASIC program, and
APPEND SUBPRG/BAS

Appends the subprogram to the main program.

CALLING ASSEMBELY LANGUAGE PROGRAMS

RSBASIC provides a method for calling an external assembled
object code program from your BASIC program. To do this, use
these guidelines:

When writing the assembly language program ...

1. We suggest that you calculate the originating address
for your assembly language program as follows:

TRSDOS TOP memory address¥®
- number of bytes in your program

-y - T "~ - W Vn PR S o W] D R WD TS Y oD LD i s i mm i S

originating address

* Your TRSDOS TOP memory address depends on the size of your
system, which version of TRSDOS you have, and whether you will
load high overlay programs such as DEBUG and SETCOM. The top
addresses used in the following sample program will only work
on systems with at least 48K of memory.

2. If the subprogram will receive parameters passed to it
by the main BASIC program, refer to the section on "Parameter
Passing" of Assembly Language Subprogramse in the Programmers
Information Section. The sample program on the following pages
demonstrates an application of how this is done beginning on
line 220 of the INITIATE, TRANSMIT, and RECEIVE routines.

Radio fhaek

PAGE 5 - 7

MODEL I/III COMPILER BASIC SEGMENTING PROGRAMS

TRS-80™

When writing the BASIC program...

1. Use the EXT statement to define this address and to
name the subprogram. For example:

EXT INIT = &0CO000

assigns the name INIT to the first subprogram and defines its
originating address as hex C000.

The EXT statement should be at the beginning of your program.

2. Use the CALL statement to call the assembled program in
the same manner that CALL is used to call a BASIC subprogram.
For example:

CALL "INIT"; I

calls the subprogram named INIT and passes the parameter (data)
stored in I.

When executing the program ...

1. Load your assembled subprogram before RSBASIC using the
TRSDOS "LOAD" command. For example:

LOAD EX/OBJ:1
loads the assembled program EX/OBJ from the diskette in drive 1.

2. After loading your assembled subprogram, load RSBASIC
specifying the top memory address it may use. This address
should be the originating address of your assembled subprogram
minus one. For example, if your originating address is C000,
you should load RSBASIC with the T=BFFF option. (See Using the
BASIC Compiler, Chapter 1 for the correct syntax.)

Radie fhaek

PAGE 5 - 8

19 REM USING THE MODEL I11 RS A TERMINARL

28 REM DEMONSTRATION OF A CALL TO AM EXTERNARL RSSEMBLER
30 REM SUBROUTINE,

48 REM

59 REM BEFORE RUNMING THIS PRDGRAM . LORD THE ’TERM’

68 REM PROGRAM INMTO MEMORY, BASIC TOP OF MEMORY MUST

78 REM BE SET TO HEX ADDR BFFF, E.G.. START BASIC THIS
80 REM MWAY: RSBRASIC T=BFFF

S8 REM THE ASSEMBLER ROUTIME IMITIATE RSZ32-C.

180
119
111
139
131
132
133
134
148
150
151
132
153

179
180

29120
esiie
Priza
82138
22140
28150
201c8
8p17ve
paise
gaise
28208
egz10e
eBz20
082328
28248

28250
|

REM THEW TRAWMBMIT THE CHAR AMD RECEIVE THE CHAR.
REM

IMTEGER A, I

EXT IMNIT = 4RCAYA:EXT RETK = L2000 EXT RIRCY = LOEDRS
PRINT "IMPUT THE BRUD RRTE CODE"

REM INCODE SHOULD BE INTEGER

INPUT R

I=IHTIAD

CARLL "IMNIT";1I

C% = INKEY$

IF £8 = " THENW 153

PRINT C#¥

CALL "RSTH":C$

PRINT C#

CALL "RERCVY"; D%

PRINT "RECEIVE CHRRACTER =";D$

GOTO 199
EMD
ORG oCBooH
3 kg Ld 200 wmY goind g 9% gty
i INITIRTE ROUTINE
J
INIT! EGL t]
LL HL.. PDRARDR
LG CHLJ.E
INC HL
LD CHLZ.D
5 iy
i INITIRTE THE BAUD RATE & W/NW SWITCH
§
LD HL.,RET® i BAYE RETURM ADDR
PUSH HL 5
Lo HL, {PDRRDR 3 i
JP CHL 2 ;CALL DECODE ROUTINE

Rade fhaok

PAGE 5 - 9

20260
BBz7e
8250
20290
29308
ee3ie
00324
28336
20348
P30a
PR362
28378
PR3as
28350
28400
20418
28420
Po43a
23440
2RA5R
BR468
20470
PR4E80
22450
28308
203518
L e Yed
ensaa
28548
285oe
ea5en
0578
Q588
eRs3e
20600
PRs1e
286z
8630
PoE40
28658
AvEsy
8as7e
2B6Ea
2Re3e
28798
ea7ie
297ze
28738
pB748
2a75e
2a7608
aa7v7e
2e788
Be798

RETURN FROM DECODING ROUTINE

&
H
5 A= RETURN CODE © -> MORE ITEM LIST
3 NOT @ =~> NO MORE LEFT
) B= PARM TYPE © => INTEGER
} 1 ~-> RERL
} 2 ~> BTRING
) DE = ARGUMENT RDDR
4
RETS: LD A.8
cP B 3 IF INTEGER
JP NZ, ERROR JNOT INTEGER
INC DE
Eg g:(DE) JGET M8B OF IMTEGER
f 4
JP HNZ, ERROR1 JCODE > 15
DEC DE JGET CODE
LD A.CDED
LD B,H ISAYE TO B
LD DE.1& JLET DE= 16
LD ML, 8 JIMIT HL = @
OrR R JOR FOR 2 FLAG
JR £, OVER sIF CODE = @
KL DEC B ;B AS COUNTER
JR Z,DVR1 }
ROD ML, DE ;
JR #0Z 3
OvRY RDD KL, DE)
OVER ADD AL sR=C CODEX 16 2+CODE
LD C41FBHY. A i
LD A,8 JSET NO WRIT SWITCH
LD CA41FAM I, A i
CALL RSINIT JCALL FOR R8232-C INITIRTE
EFT: RET
b st L] ; ol
s DEFINE ROUTINE
H
PDRADR: DEFU 9
RSIMIT EQU o8
MSG1 DEFH ‘CODE I8 MOT A IMTEGER’
DEFB 2DH
MsGz DEFM ‘CODE GRERTER THAMW 1357
DEFB @abH
YOLINE EGL 539
'x bl . Lt el Lo Eada il o T ol L
[ERROR ROUTINE
3
ERROR EGU %
LD HL, MB61
TURM CARLL YOLINE
JR EFT
ERRORL: LD HL, MBGZ
SR TURM
END INIT

PAGE 5 - 10

g@1e8 ORG BDogeH

08112 -~ - -
20120 TRANSMIT ROUTIME

22138

@@14% RSTH: LD HL PDRADR)

28152 LD CHLY,E ;

Be1 70 THE HL

08180 LD CHLD.D

DB LG 5 o oo o
28200 TRAMSMIT THE CHAR TO RS232-C INTERFACE
aazie

RBzEe LD ML, RET1)

28238 PUSH HL ;

89248 LD HL., ¢ PDRFDR 3)

28250 JP CHLY JCALL POR

BP2ED § wommmmm e et e e e
OZ73 RETURN FROM THE DECODING ROUTINE

o280

#8258 RETL: LD R, 2 s IF STRING?

oG CP B

BB310 IR MZ, ERROR SIF WOT

BBREG J owmrm o e e o e e
98332 ; DE = STRING DOPE

98249

89350 LD A, (DE) JADDR OF STRING
00363 LD L.A

@370 INC DE JHL => ADDR OF STRIMG
23383 LD A, ¢DED ;

68350 LD H. A ;

BE420 LD AL CHL R =» STRING LENGTH
28410 CP 2 i IF LENGTH >2
RO4ZE IR MC ., ERRORY j

80430 1HE HL JGET STRING ITSELF
88449 LD R, CHLD ;

pE4=0 CALL RETHI s

28468 EFT: RET

P478 ;- o e - S
29450 DEFINE ROUTINE

aR4sa

peS08 PORADR: DEFW @

paS1m RSTXL: EQU a3

p@%Ze YDLIME: EQU %35

28530 MSGL DEFM ERROR FOR NOT A STRIWG’

BE543 DEFE ODH

eesSa M3GZ DEFM ‘ERROR FOR LENGTH OVER 1

90560 DEFE @DH

BESTE j~mmmrmmmom . — e

BaSEa) ERROR HAMWDLING ROUTINE

095508

PBEOY ERROR EQU $

00510 LD ML , MSG1

BR62e BACK: CALL YDLIME

peE3a JR EFT

PB648 ERRORI EQU $

2650 LD HL, MSG2

BO662 JR BACK

08679 END RETH

PAGE 5 ~ 11

001806
06110
00128
20130
061406
pa15e
gvica
88178
gglea
08150
8a200
gezie
BRZZ0
98238
08248
BRZ50
20260
@Bzve
8260
9Bz39
80398
ga3lo
BR320
892339
26346
BB338
623608
Ba37o
PB388
00358
08408
Be41o
Pe420
28438
B@448
BO450
PO4EE
28470
80488
8430
St
685109
Baszs
Pa52e
2go4d
88350
82568
20579
2a5s8
883530
poeaad
ggeie
ool

ORG

PEBBeH

3 wmwe

RSRCY

g G20

RECEIVE ROUTINE

EGU
LD
LD
INC
LD

¥

HL , PDRADR
(HLJ.E

HL

CHL D

J S99 600 cebeR GRRED B9 D G et 25500 SR GAEED oD OG0 CORDG GNED ST gy TS GOIPS 5002 GRRER OSE3 43500 IR AUV (O GO D SOV IR 0USTF E0) 0550 HEER KD IS0 0GP SOID 90D GIRD S0 AR) 00 QD R s D QSORY OBMRN G

RECEIVE R CHAR FROM RS232-C INTERFACE

§
3

HL,RET2 JBAVE RETURN ADDR
HL 4

HL , ¢ PDRADR »

CHL DY sCALL PDR

} R 500 G R U R U WY e GO SSTED BRD QU (U SS9 T QD g OLPUR SO (TR0 63009 RS G930 OOV GROZD G SRISY £9SD 00 B30 G est? USROS malp pUTEY D GRG0 657 GRTRS OSI2D oD OSDAD St 65056 NP OSNNE BB LIETH (UR%0 0088

RETURN FROM DECODING CALL

RSRCYL
YOLIME
FORADR
BUFF
MSG1

LE
CP

A. 2 JIF IT I8 STRIMWGT

B }

MZ, ERROR JIF MOT

R,CDE 4 .

L.H iLH => RODR OF STRING
DE

F.CDED

H.R b

CBUFF y,HL ISAYE INTOD BUFFER
RESRLCY1 JCALL RECEIVE ROUTINE
M1 3

HL . {BUFF > JHL = RDDR

{HL 3., B JGEET LEMGTH =

HL 3

A, (41E8BH JGET RECEIVE CHAR
CHLL2.A JPUT IMTO BUFER

DEFIMNE RDUTINE

EQ
EGU
DEFL
DEFM
DEFHM
ﬁEF@

80

539

8

8

"RECEIVE MOT A STRING’
20H

EQQDE HAMDLING ROUTIME

EGU

£

HL, M8k
YDLINE
EFT
RSRCY

PAGE 5 - 12

MODEL I/III COMPILER BASIC SEGMENTING PROGRAMS

TRS-80™

HOW TO CHAIN PROGRAMS

P L e — N R

The CHAIN statement chains programs. For example:

CHAIN "PROGZ2/BAS™

erases the program presently in memory, loads PROGZ2/BAS, and
executes it.

CHAIN "DRILL:2"

erases the program in memory and loads and executes DRILL from
the disk in drive 2.

This is how program chaining could be used:

10 PRINT "WHICH DRILLS DO YOU WANT TO TRY"

20 PRINT "(1)ADDITION (2)SUBTRACTION {3)MULTIPLICATION"
30 INPUT X

40 ON X GOTO 100, 200, 300

100 CHAIN "ADD/CMP"
200 CHAIN "SUBTR/CMP"

300 CHAIN "MULT/CMP"

As with subprograms, you may pass data to the chained program.
This is done with the COM statement. COM must be the first line
in both the originating program and the chained program. For
example, this could be the originating program:

10 cCoM AS

20 PRINT "TYPE YOUR NAME"
30 INPUT AS

40

50

60

70 CHAIN "TWO/BAS™
and the chained program could begin like this:

10 CoM as

20 PRINT "HELLO"; AS
30 PRINT "THESE ARE THE FIRST 5 QUESTIONS"

Because of the COM AS$ statement, the value of AS is retained
during the chaining process.

For more information on COM, see the Keywords Chapter.

Radie fhaek

PAGE 5 - 13

MODEL I/III COMPILER BASIC SEGMENTING PROGRAMS
TRS-80™

SUBPROGRAMS VS. PROGRAM CHAINS

T v - T~ - - 2 O] D o T] -~ O~ -] -

Subprograms are a good way to perform complicated routines on
data repeatedly in the program, each time returning back to the
main program. In chaining, it is more difficult to return back
to the original program, since the main program is erased from
memory when a program is chained.

Program chaining does offer a convenient way to write a program

which reguires more memory than there is available. The amount

of memory you need to run a series of program chains is only the
amount required to run the longest program in the series.

Subprograms do not have this memory saving capability. All
subprograms must be loaded along with the main program prior to
executing the program. There must be enough memory for the main
program plus all the subprograms which will be called.

Radie fhaek

PAGE 5 - 14

TRS-80™

hkkhkhdkhkhkhkkhkhkhkhkkhkhkhhhhdhkhkhhkkkhhkkhkhhhhhkhhhhhtk

* *
* Chapter 6 *
%* *
* BASIC KEYWORDS *
* *
khkkhthhkkhkhkhkhhkhkhkkhkhkhkhhhhhhhkdhbhhhhhhhhhkikhkdhdra

Radie fhaek

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

INTRODUCTION

The RSBASIC programming language is made up of keywords. These
keywords, with their parameters, instruct the Computer to
perform certain operations.

This chapter contains entries for each keyword, organized
alphabetically. The first two pages show the meaning of the
format for each keyword entry. A brief introduction to BASIC's

two types of keywords -- statements and functions —-- is on the
next pages.

OQUTLINE FOR CHAPTER 6
BASIC KEYWORDS
I. Format for the Keyword Entries
IT. Statements

ITI. Functions

Iv. Alphabetical Entries for each Keyword

Radie Sfhaek

PAGE 6 - 1

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

FORMAT FOR THE KEYWORD ENTRIES

————— - - {7 7 o7 o 07 S S o S D D 77 b T o

A sample keyword entry is on the next page. This is the meaning
of its format:

1. The first line is the keyword itself. The second line
briefly describes what it does.

2. All keywords are defined as statements or functions:

a. a STATEMENT is a line in a program. It, along with its
parameters, tells the Computer to do some operation when that
particular line in the program is executed.

b. a FUNCTION is a subroutine. It must be a part of a
statement.

3. The information in the gray box is the syntax for the
keyword. The first line shows the format to use in typing the
keyword. This format line always contains:

a. the keyword itself - this must by typed exactly as it
appears.
And may also contain:

b. parameters.
The parameters are defined on the next lines. A parameter
enclosed in single quotes means that you must specify its value.
Parameters may only be omitted if the syntax states that this is
allowed.

In the syntax illustrated on the next page, LEN is the keyword
and 'string' is the parameter. The second line gives the
meaning of 'string'. Since ‘string' is enclosed in single
guotes, you must specify its value. The syntax does not state
that 'string' may be omitted. Therefore ‘string' is required.

4. This explains how to use the keyword.

5. These examples illustrate how the keyword might be used. All
of these examples must be a line in the program to be executed.

6. Each entry contains a sample program using the keyword. Some

of the longer sample programs illustrate a sample run of the
program.

Radio fhaek

PAGE 6 -~ 2

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

-— FUNCTION --

LEN
Get Length of String

LEN returns the current number of characters in the 'string'.

Examples

PRINT LEN{"MARY")
Prints 4.

PRINT LEN("MARY HAD A")
Prints 10.

X = LEN(SENTENCES)

Stores the number of characters in SENTENCES in X.

Sample Program

e o - - —— -

108 PRINT "INPUT WORDE OR A SHORT SENTENCE™

116 IMNPUT A%

128 PRIMT "vYOUR BENTEMCE HASY: LEN(AS) 1" CHARGUTERS®
138 G070 108

Radie fhaek

PAGE 6 - 3

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

STATEMENTS

A program is made up of lines; each containing one or more
statements. A statement instructs the computer to do some
operation when that particular line is executed. It may only be
executed when the program is run. For example:

100 sTopP

Tells the Computer to stop executing the program when it reaches
line 100.

Statements often include parameters. For example:
100 GOTO 500

Tells the Computer, when it reaches line 100, to execute the
statement on line 500 next.

BASIC statements perform the operations listed below:

VARIABLE DEFINITION

If none of the sgstatements below are used, BASIC will treat all
variables without a type declaration tag as real numbers, and no
arrays will be allowed:

INTEGER - defines variables as integer
STRING - defines variables as string and defines the length

of the string

REAL - defines variables as real

DIM ~ defines array variables, the length of array
variables, and the length of string variables

The chapter on BASIC Concepts explains how BASIC handles
variable definition.

ASSIGNING VALUES TO VARIABLES

BASIC allows you to assign values to variables directly or by
using data statements:

DATA - stores data in your program so that you may assign

Radio fhaek

PAGE 6 - 4

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

it to a variable

LET - assigns a value to a variable {(the keyword LET may be
omitted)

READ - reads the data stored in the DATA statement and
assigns it to a variable

RESTORE - restores the pointer which points to a data item
in the DATA statement

SWAP - exchanges the values of variables

PROGRAM FLOW

The Computer will execute each line in the program sequentially,
unless instructed to do otherwise. These statements change the
flow of a program, either by branching within a program or
segmenting a long program into shorter programs:

Branching within a Program

" > o D - - i g S oo M " S s o S o 1 i o it

FOR/NEXT - egtablishes a program loop

GOSUB - transfers program control to the subroutine

GOTO - transfers program control to the specified line
number)

IF...THEN...ELSE - Performs the specified operation if the
conditions are met

ON...GOSUB - tests the value and brancheg to the subroutine

ON...GOTO - tests the value and branches to the program
line specified

RETURN - returns from the subroutine to the calling program

STOP - stops execution of the program

Segmenting Programs

CALL - transfers contrcl to the subprogram

CHAIN - loads and executes the specified program

COM - stores variables in a common area so they may be
passed to the chained program

EXT - defines the address of an external routine

END - ends compilation of main program

SUB - defines the beginning of the subprogram

SUBEND - returns execution back to the calling program

The chapter on Segmenting Programs explains how to segment
programs. ,

Radie fhaek

PAGE 6 - 5

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

INPUT/OUTPUT

Keyboard input statements allow the operator to input {(type data
into memory) from the keyboard. To print data, BASIC contains
statements which output to the video display and line printer.
Data is stored on disk by using input/output statements to a
disk file.

Keyboard Input

- S 7 — . it Vo~ o o o

INPUT -~ inputs data from the keyboard
INPUT USING - inputs formatted data from the keyboard
LINE INPUT - inputs a line of data from the keyboard

Output to the Display and Line Printer

AN o S o S O~]———— 77 o " WD W o o i T Sy S~]~ oy - - - -~ "

LPRINT - prints data on the line printer

LPRINT USING -~ prints data on the line printer using the
specified format

PRINT - prints data on the display

PRINT USING - prints data on the display using the
specified format

Input/Output to a Disk File

—— -] - —— - - - "S- — o o - " —- —" — . e i

CLOSE - closes a disk file

DELETE - deletes a record in a disk file

INPUT - inputs data from a disk file

INPUT USING - inputs data from a disk file using the
specified format

KILL - kills a disk file

LINE INPUT - inputs a line of data from a disk file

OPEN - opens a disk file

PRINT -~ prints data to a disk file

PRINT USING - prints data to a disk file using the
specified format

READ - reads binary data on a disk file

WRITE - writes binary data to a disk file

The chapter on Data Files explains how to use these statements.

Radie fhaek

PAGE 6 ~ 6

MODEL I/III COMPILER BASIC BASTIC KEYWORDS

TRS-80™

DEBUGGING

These statements build an error trapping routine, which may be
used in debugging a program or handling errors from a computer

operator:

ERROR - simulates the specified error

ON BREAK GOTO - enables a <BREAK> handling routine
ON ERROR GOTO - enables an error trapping routine
RESET BREAK - disables the <BREAK> handling routine
RESET ERROR - disables the error trapping routine
RESET GOSUB - clears all the return addresses
RESUME - terminates the error handling routine

SPECIAL STATEMENTS

DEF - defines a function

RANDOMIZE - reseeds the random generator

REM - allows insertion of programmer's comment line
SYSTEM - returns the system to TRSDOS

Radie fhaek

PAGE 6 - 7

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

FUNCTIONS

Functions are built-in subroutines. They may only be used as
part of a statement.

Most BASIC functions perform certain routines to return numeric
or string data. Special print functions are used to control the
video display.

NUMERIC FUNCTIONS

All numeric functions return a number and may be used in a
statement as numeric data. For example, the function:

SQR(9)

returns the number 3 (the square root of 9). This function may
be used in a statement as numeric data. For example:

X = BQR(9)
assigns the square root of 9 to X.

Numeric functions perform these operations:

Arithmetic Operations

ABS - computes the absolute value
SGN - computes the sign (positive, negative, zero)
SQR - computes the square root

Converting Data to a Different Data Type

—-——— "~ o—- e o o~ > - — > o> — ot o S} Sy o o o s W S o g o s S

CVD - converts integer data to a real number

CVi - converts real data to an integer

HVIL - converts a hexadecimal string to an integer

INT - converts real data to a whole number

VAL - converts numeric characters in a string to a number

Radio fhaek

PAGE 6 - 8

MODEL I/III COMPILER BASIC BASIC KEYWORDS

¢ ;

TRS-80"

Computations on Strings

ASC - returns the ASCII code of a string character

DIG - computes the length of numeric field in a string
LEN - computes the length of a string

POS searches for a substring within a string

I

Bit Manipulation

o —_— o —— - — - " — . e

AND - calculates the logical AND
OR - calculates the logical OR

XOR - calculates the exclusive XOR

Trigonometric Calculations

- — - - — . 7—_ " ———_—

ATN - computes the arctangent

COS - computes the cosine

EXP - computes the natural exponential
EXP10 - computes the base 10 exponential
LOG - computes the natural logarithm
LOG1l0 - computes the base 10 logarithm
SIN - computes the sine

TAN - computes the tangent

Special System Information

——— - - o — o S~ VT o] o S " " S S S ol

CRTX - returns the row position of the cursor

CRTY - returns the column position of the cursor
ERR ~ returns the error code

EOF - notifies if the end of a disk file is reached
RND -~ returns a pseudo-random number

STRING FUNCTIONS

All string functions return a string and may be used in a
statement as string data. For example, the function:

STRINGS {5, "*")

returns the string ***** (5 asterisks). This function may be

Radie fhaek

PAGE 6 - 9

 MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

used in a statement as string data. For example:
A$ = STRINGS(5,"*")
assigns ****% to AS.

String functions perform these operations:

Converting Numbers to String

CHR$ - returns the one-character string of the ASCII code
HEX$ - converts an integer to a hexadecimal string
STR$ - converts numeric data to string

Inputting a String

INKEYS$ - gets a keyboard character, if it has been pressed
INPUT$ - inputs a character string from the keyboard

Manipulating a String

SEGS$ - returns a segment of a string
STRINGS - returns a string of characters

Special System Information

DATES - returns the date which was set when initializing

the system
TIMES - returns the time recorded in the system's clock
CRTIS$ - returns the characters from a specified position on

the video display

SPECIAL PRINT FUNCTIONS

Unlike numeric and string functions, the special print functions
do not return data. Instead, they are used to control the video
display. For example:

CRT(5,7)

Radie fhaek

PAGE 6 - 10

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80"

Moves the cursor to the row 5, column 7 position on the video
display. This function may only be used in a PRINT statement.
For example:

PRINT CRT(5,7):"HEADING"

Prints HEADING at the row 5, column 7 position on the video
display.

These are the special print functions:

CRT - moves the cursor to a specified row and column
position

CRTR - moves the cursor relative to its current row and
column position

CRTG - moves the cursor to a specified position and prints
a string in the graphics mode

TAB - tabs the cursor to a specified column position

Radie fhaek

PAGE &6 - 11

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80 ™

-- FUNCTION -—

ABS
Compute Absolute Value

ABS returns the absolute value of the ‘number’. The absolute
value is the magnitude of the number without respect to its
sign.

ABS returns the same type of value (integer or real) as number.

Examples
PRINT ABS({3)
Prints 3.
PRINT ABS(-3)
Prints 3.
PRINT ABS{0)
Prints 0.
X = ABS{Y + 3X)
The absolute value of ¥ + 3X is assigned to X.
IF ABS(%) < 1BE~6 THEN PRINT "TOO SMALL"

TOO SMALL is printed only if the absolute value of X is less
than the indicated number.

BRadie fhaek

PAGE & - 12

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™
Sample Program
B@ REM ®%% SAMPLE PROGRAM DEMONSTRATING ABS *¥%

7@ REM

1ag INTEGER A7

118 PRINT CHR®{28)5CHR&{(31)3

128 PRINT "GUESS MY NUMBER "3

138 X = RND{®) * 28 + 1

140 IMPUT Y: IF X = ¥ THEN 170

158 PRINT "OFF BY"s ABB{X-Y)3 ". GUEEE AGATN"3
168 GOTO 140

178 PRINT "RIGHT! GUESE MY NEXT NUMBER":

188 GOTO 138

GUESE MY NUMBER 7 1@

OFF BY 9 . GUESE AGAINTY |
RIGHT! GUESE MY NEXT NUMBER? &
OFF BY Z . GUESBS ALBAINT 6
RIGHT! GUESS MY NEXT NUMBER? 5

OFF BY 2 . GUESS AGAINT 3
. OFF BY 4 . GUESS AGAINT 7
RIGHT! GUESE MY NEXT NUMBER?

Radie fhaek

PAGE 6 - 13

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

~- FUNCTION --

AND
Calculate Logical AND

AND is a logical operation performed on the binary
representations of the two 'numbers'. AND compares each bit of
the two numbers. A binary 1 is returned if both bits are a 1; a
0 is returned in any other case:

If ‘'number' is real, AND will convert it to an
integer. The binary number that AND returns is always
expressed as an integer.

Note: Also see OR and XOR.

Examples

PRINT AND(51, 15)

Prints a 3. The operation is performed on the binary
representation of the two arguments:

Binary
Integer Representation
51 00110011
15 00001111
3 00000011

Radie fhaek

PAGE 6 - 14

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

A = AND(51,15)
Performs the AND operation and assigns the value of 3 to A.

The two examples below illustrate a common use of AND. All
other bits can be masked out to see if one particular bit is
“On" (l):

IF AND(128, 64) = 64 PRINT "TRUE" ELSE PRINT "FALSE"

Prints "FALSE".

IF AND(96, 64) = 64 PRINT "TRUE" ELSE PRINT "FALSE"

Prints "TRUE".

Sample Program

18 REM *#%% AND FUNCTION x%=

2B INPUT PROMPT="ENTER &N INTEGER VALUE (32768 TO 327467) "3 X4
2B PRINT "LEABT BIGNIFICANT BYTE IS "3 ANDXX: &BOFF)

4B GOTO 2@

R

ENTER AN INTEGER VALUE (~32768 TO 327467 223227
LEAST SIGNIFICANT BYTE IS5 211

ENTER AN INTEGER VALUE (~-32768 TO 32747 32765
LEAST SIGNIFICANT BYTE 18 3

ENTER aN INTEGER VALUE {(-32768 TO 327467

Radio Shaek

PAGE 6 - 15

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

—~ FUNCTION —--

ASC
Get ASCII Code

ASC returns the ASCII code of the first character in the
'string’'.

Examples

PRINT ASC("A")
PRINT ASC("AB")

Both lines will print 65, the ASCII code for "A".
X = ASC(BS)

Assigns the ASCII code for B$ to X.

Sample Program

168 REM #¥% SAMPLE PROGRAM DEMONSTRATING ABC *¥%

118 REM

128 REM *»¥% CHANGING THE OUTPUT OF ALL THE CHARACTERE *#%
138 REM *¥% ON YOUR KEYROARD ®#%

148 REM

150 PRINT "TYFE THE CHARACTER YOU WANT ALL YOUR KEYS TO REPRESENT®
168 INPUT B$

Radio fhaek

PAGE 6 - 16

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

178 PRINT "NOW TYPE ANY CHARACTER ON YOUR REYBOARD®
186G PRINT "NOTICE THAT THEY HAVE all. BEEN CHANGED®

198 PRINT "YOU WILL HAVE TO PREESS 87 TO GET QUT OF THIE

2 C% o= INREY$ ¢ IF 0% = Y THEN 200
218 IF C% = "@% THEN 258

228 0% = CHR${(ABCIBS))

230 PRINT C%3

243 GOTO 2006

250 5TOP

#R

TYPE THE CHARACTER YOU WANT ALL YOUR KEYS TO REPRESENT
7Y

MOW TYPE ANY CHARACTER ON YOUR REYROARD

NOTICE THaAT THEY HAVE alLl BEEN CHaNGED

YOU WILL HAVE TO PRESS *8° TO GET QUT OF THIS PROGRAM
YYYYYYYYYYYYYYSTORP LINE 258

*,

PROGRAM®

Radie fhaek

PAGE 6 - 17

MODEL I/III COMPILER BASIC
TRS-80™

BASIC KEYWORDS

~-— FUNCTION -~

ATN
Compute Arctangent

ATN returns the angle of the 'number'. The number is the
tangent. The angle will be in radians. To convert to degrees,
multiply ATN(X) by 57.295779513082.

The result is always a real number.

Examples

X = ATN(Y/3)

Assigns the value of the arctangent of ¥/3 to X.
PRINT ATN(1.0023) * 57.2

Prints 44.9905.
R =N * ATN(~20 * F2/F1)

Assigns the indicated value to R.

Note: Trigonometric functions are not loaded when you load the
BASIC Compiler; they are loaded upon demand. This might cause a
slight delay when using these functions, since they must be

loaded into the system first.

Sample Program

Radio fhaek

PAGE 6 - 18

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™
825 REM #%% SAMPLE PROGRAM DEMONSTRATING ATN #¥#
P8 REM
107 PRINT "INPUT TANGENT®
11 INPUT T

126 PRINT "ANGLE IS"3 ATN(T: = 57.29578
138 GOTO 16@

* U

INPUT TANGENT
715

ANGLE I8 8&6. 1859
INPUT TANGENT

7 3

ANGLE I8 71.54&51
INPUT TANGENT

7 L5867

AMGLE IE 2%.00532
INPUT TANGENT

Ey
f

Radio fhaek

PAGE & - 19

MODEL I/IXI COMPILER BASIC BASIC KEYWORDS

TRS-80™

- STATEMENT ==

CALL
Bxecute External Subroutine

A CALL statement instructs the computer to run a subprogram. In
addition, it sends the list of data that you specify to the
subprogram. The subprogram performs its operations on this data
and sends the resulting values back to the main program.

A subprogram, like an internal subroutine, is called from the
main program or another subprogram, executed, and returns to the
line after the CALL. It may be as many lines as you want and
may have its own local variables, independent of the main
program.

A subprogram has the added flexibility of performing the same
operations on whatever data is sent to it by the main program.
This is especially helpful if you are performing the same
complicated computations with different variables repeatedly in
different parts of your program.

CALL will not "Load" or "0ld" a subprogram. All subprograms
must be Loaded or Appended into memory before the main program
is executed.

CALL may also be used to call an external machine language
routine. To do this, vou must have an EXT statement in your
program defining the memory address of the routine. See EXT and
the chapter on Segmenting Programs.

Radse fhaek

PAGE & - 20

MODEL 1I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

Examples

P T R -

If you have a subprogram beginning with the statement:
SUB "ADD"; X, ¥Y$
The following CALL statements could be used:
CALL "ADD"; 5, "HEADS"
Executes the subprogram named "ADD". This statement also passes
the data 5 and "HEADS" to the subprogram. The subprogram

assigns 5 to X and "HEADS" to ¥$. It then performs its routine
on this data.

CALL "ADD"; A, BS
This statement also executes the subprogram "ADD". It passes
the data A and B$ to the subprogram. The subprogram assigns the
value of A to X and B$ to Y$, performs its operations on X and
Y$, and sends the resulting values back to the main program as A
and BS$.
If a subprogram begins with the statement:

SUB "CHART"; M(), Ns$(,)
Then:

CALL "CHART"; C(), D$(,)
Executes the subprogram "CHART" sending all the data in the
one-dimensional array C and the two-dimensional array D$ to the
subprogram. The subprogram performs its routine on the data and
sends the resulting data back to the main program.

CALL “"CHART"; SALES(), ITEMSS(,)

Executes the same subprogram CHART, which will perform the same
routine on all the data in the SALES and ITEMSS$ arrays and send
the resulting data back to the main program.

Note: For information on how to use subprograms, see the
section on Segmenting Programs. Also see END, SUB, and SUBEND.

Radio fhaek

PAGE 6 -~ 21

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

Sample Programs

g8 REM #4% SAMPLE PROGRAM DEMONSTRATING CALL ®x#
D@ REM

198 ¥ = 2 3 ¥ = 3 1 ¥
1168 Call. "SBUBPROG": X
128 CaLL "BUBPROG": Y
133 CAlL "SURPROG?: 7
148 PRINT Xs¥sl

150 END

168 BUE YBUBPROG"S A
170 A = A % 2

1868 BUBEND

= 4

*Ri
4 & B
8TOF LINE 138

88 REM #%% SAMPLE PROGRAM #Z DEMONSTRATING CALL ®%%
Q@ REM

100 PRINT "INPUT WEEKLY GROCERY EXPENBES"

118 INPUT F

120 CalLL "ANNUALY: F

138 PRINT ¥ INPUT WEEKLY GASOLINE EXPENBEG”

142 INFUT G

158 CALL "aNNUALY S G

16@ PRINT "ANNUAL EXPENSES ARE -——-— "

17@ PRINT F3 "FOR GROCERIES": G35 "FOR GASOLINET
186 END ,

198 SUB "ANNUAL Y3 X

200 X = X % 82

213 SUBEND

*RU
INPUT WEEKLY GROCERY EXPENSER
7 24
INPUT WEEKLY GABOQLINE EXPENBES
715
ANNUAL EXPENBES ARE —mwo
1248 FOR GROCERIES 78B FOR GASOLINE
STOP LINE 188
#,

Radie fhaek

PAGE 6 - 22

MODEL I/IIT COMPILER BASIC BASIC KEYWORDS

TRS-80™
g REM *¥#% DAMPLE PROGRAM #3 DEMONSZTRATING CaAlLl. #%%

Y@ HEM

180G DIM Uil

118 DIM o1

1208 FOR T = 1 TO 12 ¢ HEAD U{I} & NEXT I

138 FOR I = 1 TO 12 : READ O(I) ¢ MNEXT I

140 CALL "CHART": PUTILITIEE"s U{ 3

15@ Call. "CHARTY: "OFFICE SUPPLIES"s O{)

168 DATA 158 175, 188, 120 1385 1785 14580 70+ 1455 135 145
178 DATA 10@:753+65593: 1045 128 110 92 88 98 78 &0
180 END

196 SUB "CHART": A%s B()

288 DIM CH{12)

218 PRINT CHR$(28ys CHR%(31)

22@ PRINT CRT(@s 1355 "EXPENBES —— "3 A%

238 PRINT

240 FOR I = 1 TO 12

2580 READ C#H(1x: X = B(I)/3

268 PRINT C®{I)5 " "3

270 FRINT STRING®(Xs " X"}

280 NEXT I

29% PRINT CRT{(15+@)3 "PREBS <ENTER:"S

303 A6% = INPUTS(L)

31@ DATA "JAN":"FEBRY s "MAR" s "APR" s "MAY "« "JUN" s "JULY ¢« "AUGY s "BEP"
320 DATA "OCT"s "NOV® s "DECY

3230 SUBEND

Radse fhaek

PAGE 6 - 23

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

~- STATEMENT --

CHAIN
Load and Execute Next Program

CHAIN loads a program stored on disk into memory and executes
it. When the chained program is loaded, the resident program is
deleted from memory.

Note: Also see COM and the chapter on Segmenting Programs.

Examples

CHAIN"NEXT/BAS"
Loads the program NEXT/BAS and executes it.
CHAIN"PROGZ2/CMP:1"

Loads the program PROG2/CMP from the diskette in drive 1 and
executes it.

CHAIN AS

Loads the filespec A$ and executes it.

Sample Program

1@ REM ¥x® PROGEZ/BAS MUST FIRST BE SAVED ON DISK ¥x%#
=@ PRINT "ENDING PROGRAM 1~ BEGINMING PROGRAM 2"
A CHAIN YPROGRZ/BARY

Radie fhaek

PAGE 6 - 24

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

—— FUNCTION --

CHRS
Get Character for ASCII or Control Code

CHRS$ is the inverse of the ASC function. By specifying an ASCII
code, CHRS returns the code's corresponding one-character
string. This one-character string may either be one of the keys
on your keyboard or a control character.

Note: To produce graphics characters, see CRTG

Examples

PRINT CHRS$(35)
Prints a # on the display.
P$ = CHRS(T)

The number represented by T is converted into its ASCII
character equivalent assigned to PS.

PRINT CHRS$(126)

Prints the symbol for a space (7). ©Notice that this is not a
keyboard symbol.

AS = AS & CHRS(I)

The character whose ASCII code is I is added to the end of AS.

Sample Programs

Radie fhaek

PAGE 6 - 25

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

88 REM *#% SAMPLE PROGRAM #1 FOR CHR$ *#%

@ REM

192 PRINT CHR$(ZB)3 CHR%(31)

11@ PRINT “TYPE IN THE CODE (@-1Z7)°

128 INPUT C

138 PRINT CHR%(C)s * JUST PRINTED THE CODE *3 C
140 GOTO 110

TYPE IN THE CODE (@-127)

7 35

JUST PRINTED THE CODE 35
TYPE IN THE CODE (@-127)

7 48

@ JUST PRINTED THE CODE 48

TYPE IN THE CODE (@-137)
7

88 REM #%5% SAMPLE PROGRAM #2 DEMONETRATING CHR$ ®¥%
@ REM

180 PRINT CHR®(Z8)5 CHR$(31)
118 PRINT *THIS IS THE LINE THAT WILL SLOWLY GET ERABED" 3

A OFOR I = 1§ TO 5888 ¢ NEXT 1 @ TINITIAL DELAY
1230 FOR I = 1 7O 488 ¢ NEXT T =@
140 PRINT CHR$(H3)3
158 GOTO 138
THIS IS5 THE LINE THAT WILL SLOWLY GET ERASED
THIS IS THE LINE THAT WILL SLOWLY GE
THIS IS5 THE LINE THAT WILL SLOWLY
THIE I8 THE LINE THAT W

THIS I8 THE L
THIS 1

PAGE 6 -~ 26

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

== STATEMENT --

CLOSE
Close Disk File

This statement closes access to the file or files referenced by
'file-unit', assigned when the file is opened.

Examples

CLOSE #1
Closes file-unit 1.
CLOSE #START + NCRMT
Close file-unit (START + NCRMT).
CLOSE

Closes all open file-units.

Sample Program

See the chapter on data files.

Radie fhaek

PAGE 6 - 27

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

== STATEMENT ~-

COM
Allocate Common Variable Area

You may use COM to pass one or more variables to the next
pregram. COM allocates a common area in the program for
variables so that they may be passed to the next program.

Note: Also see CHAIN and the chapter on Segmenting Programs.

Program 1 Program 2

COM data data L COM

CHAIN ‘ﬁ_——'

Examplies

COM C, D$

Allocates a common area for storing the variables

Radie .

PAGE 6 - 28

y &

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

C and D$ so they may be accessed by the next program.

COM BS$(50)

Allocates a common area for storing array BS$ with 51 elements
(0~50) so that the array may be accessed by the next program.

coM A(10,10)

Allocates a common storage area for the two dimensional array A.

Sample Progra

- o oo - - v wa

g REM ¥¥¥ PROGZ/BAE MUEBT FIRST BE SAVED ON DIGK %#%

2B REM

38 REM %% PROGEZ/BAZ WILL RETAIN WHATEVER VALUES #%#%

481 REM ®#¥% THIG PROGRAM SETS FOR A2 AND B o

20 REM

LB COM A%s B

7@ REM #EE PROGI/BASE MUBT HAVE AN IDENTICAL COM LINE xx%

8@ PRINT "IMPUT A MAME AND A& MUMBER®
G@ OINFUT A% B
120 CHAIN "PROGZ/BAGY

Radie fhaek

PAGE 6 -~ 29

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

~= FUNCTION =--

COs
Compute Cosine

COS returns the cosine of the 'number'. The 'number' should be
an angle, which must be given in radians. When the 'number' is
in degrees, use COS('number' * .01745329251993).

The result is always a real number.

Examples

Y = COS(X)
Assigns the value of COS(X) to Y.
Y = COS(X * .01745329251994)

If X is an angle in degrees, the above line will give its
cosine.

PRINT COS(5.8) - COS(85 * .42)
Prints the difference of the two cosines.
G2 = Gl * ((Cos(Aa)) * 15)

Computes the indicated cosine and stores it in G2.

Note: Trigonometric functions are not loaded when you load the
BASIC Compiler; they are loaded upon demand. This might cause a

slight delay when using these functions, since they must be
loaded into the system first.

Radie fhaek

PAGE 6 - 30

MODEL I/III COMPILER BASIC BASIC

KEYWORDS

TRS-80™

e

7@
16@
118
ize
138
148

*RU :
INPUT ANGLE IN DEGREES
7 3@
COSINE 18 0.866B25

INPUT ANGLE IN DEGREES
745
COBINE IS B.787167

INPUT ANGLE IN DEGREES

7

Program

REM e SAMPLE FROGRAM DEMONSTRATING COE xxs#
REM

PRINT "INPUT ANGLE IN DEGREESY

INPUT A

A = A / B7.2957795

PRINT "COSINE IS8 "3 Cob(a)
GOTO 108

Radie fhaek

PAGE 6 - 31

MODEL I/IIT COMPILER BASIC BASIC KEYWORDS
‘ TRS-80™

=— FUNCTION ~--

CRT
Position Cursor

CRT, used in a PRINT statement, positions the cursor at the
‘row' and 'column' specified on the video display. It may only
be used in a PRINT statement.

Note: The Model I/III video display consists of 16 rows (0
to 15) and 64 columns (0 to 63):

0 3 6 2 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63

=

3

CA I S T I S AR N}

Y
DY

i
™

i wad
e G

b
W

‘row' and ‘column' refer to a row and column on the video

Radie Sfhaek

PAGE 6 ~ 32

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

display.

Examples:

PRINT CRT(0,63);"&"

Positions the cursor at the top right hand corner and prints
l!&!!.

PRINT CRT(15, 0);"THIS IS LOCATION 15, 0"

Positions the cursor at the bottom left-~hand corner of the
display and prints the message beginning at that position.

PRINT CRT(17, O);:"#44"

Positions the cursor at the beginning of row 1 in position 1,0
and prints ###. (Since 17 is outside the range 0-15, BASIC
performs a MOD 16 and reduces the 17 to a 1.)

Sample Program

-~ ———— S " 2

1@ PRINT CHR$(ZB)3; CHR$(31)

= PRINT "WHAT I8 YOUR LAST NaME®

A8 PRINT CRY{Zs@):

4@ INPUT A%

580 PRINT CRT(&6s@)35 "YOUR FIRET NAME®

&H&B PRINT CRT(E.0) 3

78 INPUT Bs

83 PRINT CRT{iZ«18335 "THANK YOUs "3 B$: * "3 Agg 10

Radie fhaek

PAGE 6 - 33

MODEL I/III COMPILER BASIC

WHAT I8 YOUR LABT NAME
7 COX

YOUR FIRET NAME

7 RON

TRS-80™

THAMK YOUs RON COX!

S5TOP LINE 86
He

Radio fhaek

PAGE ©

34

BASIC KEYWORDS

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80®

==~ PUNCTION --

CRTG
Print in Graphics Mode

CRTG used in a PRINT statement, prints 'string' in the graphics
mode. The 'string' is printed as follows:

1. The first character of the string is printed at the
‘row', and ‘column’' position specified.

2. The cursor is then advanced to the next column position
on the same row. If the next position is 64, the cursor wraps
the display to column 0 of the next row. If the next row is 16,
the cursor wraps the display to row 0.

3. The next character in the string, if there is one, is
then printed at the cursor position. Steps 2 and 3 are then
repeated.

Note: Model III users have the capability to print special
characters, CHR$(192-255), but the Model I will not print any
but regular graphics. The switch to swap space compression
characters out and special characters in must be activated for
special characters to be printed. PRINT CHR$(21) will set or
reset the switch. The switch will stay set or reset, even if
you leave RSBASIC.

The 'string' may contain up to 255 characters which may be
printed in graphics mode. The characters are listed in the
Appendix. The first 32 can only be accessed by a POKE. The
rest are alphanumeric or control characters or special
characters, depending which switch is on.

As shown in the listing, all of the alphanumeric characters may

Radie fhaek

PAGE 6 ~ 35

MODEL I/IITI COMPILER BASIC BASIC KEYWORDS

TRS-80™

be referenced either by the keyboard character itself, or by the
character's ASCII code. For example:

"M"
CHRS$(77)

AS
AS

o

both assign the character M to AS.

Special and regular graphics characters may be referenced by the
character's ASCII code:

AS$ = CHRS$(170)

assigns the regular graphics character which looks like a long
thin column to AS.

For Model III users:
10 PRINT CHRS(21):
20 BS = CHR$(196)
30 PRINT CRTG(8,32,BS$)

will print a smiling face in the center of the screen.

The easiest way to print graphics images on the display is to
build a string of graphics characters. For example:

10 AS$ = CHRS(140)
20 B$ = CHRS$(157)
30 CS = AS&BS&AS&BS&AS&BS&AS&BS&ASBS

40 PRINT CHR$(28); CHRS$(31);
50 PRINT CRTG(0,0,CS)

Prints an image which looks like a railroad track at the top
left hand corner of the screen.

The sample programs for CRTG illustrate different ways of
printing in the graphics mode.

Note: Also see CRT, PRINT, and CHRS

Examples

PRINT CRTG(15,0,C$)

Prints the contents of string C$ at the bottom left hand corner
of the display.

Radio fhaek

PAGE 6 - 36

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

AS = CHRS$(132)
PRINT CRTG(8,32,AS)

Prints a tiny square in the center of the display.
PRINT CRTG(38,32,"X")

Prints an X in the center of the display.

Sample Programs

i b oman ol o o o e ks ot bl M i

18 REM ¥%% SAMPLE PROGRAM #1 DEMONSTRATING CRTG »%%
28 REM

3@ ON BREAK GOTO 170

4@ PRINT CHR$&(28)35 CHR${(31)

5@ PRINT "HIT <BREAK> TO STOpP"

H@ PRINT "SWITCHING TO CHARACTER MODE"

78 PRINT CHR$(Z1)

8h Cd = "CLUBS & CHR$(195)
G DE o= "DIAMONDE " & CHR$(194)
108 H$ = "HEARTG & CHR$(193)
118 5S¢ = "GPADES "ok CHR$(192)

128 PRINT CRTG(&s 1@, CH:

130 PRINT CRTG(7:18:D%)

140 PRINT CRTG(E: 1BsHE)

150 PRINT CRTG{9:18.8%)

146G GOTO 166

178 PRINT "SWITCHING BACK TO NORMAL MODE"
188 PRINT CHR$(Z1)

190 STOP

Radio Sfhaek

PAGE 6 - 37

MODEL

I/II1 COMPILER BASIC BASIC KEYWORDS

TRS-80™

i@
el
i)
4@
5
3]
7@
£
%)
1@
1i@
128
136
140
15@
168
178
188
190

i@
28
R34
40
@
&
7
83
G
16@
118
12
130
148
i5a
168
178
188
196
el vt

REM *%% SAMPLE PROGRAM #2 DEMONSTRATING CRTG *#%
REM

FPRINT "HIT <BREAK> TO BTOPY

ON BREAR GOTO 178

PRINT CHR$(2ZB)3 CHR$(31)

PRINT "SWITCHING TO CHARACTER MODE"
PRINT CHR${Z1)

2% CHR$ (196

B CHR$ (197)

Ce = CHR$(ZZS5) & CHR$(234) & CHR$(236)
D% = CHR%{(198) & " " & CHR$(199)

PRINT CRTG(&L:38:4%)

PRINT CRTG(7:29sC%)

PRINT CRTG(E:Z9:D%)

FOR I = 1 TGO 1@ ¢ NEXT I

SWaF A%y B% @ GOTO 120

PRINT "SWITCHING BACK TO NORMAL MODE®

i

#

TPRINT CHR%(21)

aToR

REM *¥#% SAMPLE PROGRAM #3 DEMONSTRATING CRTG *%%
REM

O BREAK GOTO 18@

PRINT CHR$&(28)3 CHR${31)

PRINT "HIT <BREAK: TO ETOP".

PRINT "GWITCHING TO CHARACTER MODE™

PRINT TaARB(Z8)3 "POPULATION EXPLOGION P11Y
PRINT CHR$(Z1)

A% = CHR$ (253D

I = 3

FOR J = 1 T0O 68 STEP 15-1

PRINT CRTG{IsJs4%)

NEXT J

I =1 +1

IF I > 14 THEN GOTO 178

GOTO 118

GOTO 178

PRINT *BWITCHING BACK TO NORMAL MODE"
PRINT CHR®(Z1)

BTOP

Radie fhaek

PAGE 6 - 38

MODEL I/III COMPILER BASIC ‘ BASIC KEYWORDS
TRS-80™

—-— FUNCTION --

CRTIS
Read Video Display

CRTIS$ reads the characters on the video display in the area of
the display that you specify. It returns a string of characters
beginning on 'row' and 'column' with the length that you
specify.

Note: See CRT for an illustration of row and column positions.

Examples

If, immediately before executing the statements below, this is
printed on your video display beginning at position row 1,
column O:

(c) 1979 by Ryan-McFarland Corp. All rights reserved.
Then:

PRINT CRTIS$(1,0,10)
Prints "(c) 1979 b"

A$ = CRTIS(1,0,54)

Stores "(c) 1979 by Ryan-McFarland Corp. All rights reserved.”
in AS.

PRINT CRTIS$(1,12,42)

Prints "Ryan-McFarland Corp. All rights reserved."

Radio fhaek

PAGE 6 - 39

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™
Sample Programs
&8 REM ®##% BAMPLE PROGRAM #1 DEMONSTRATING CRTI$® ##%
7B REM
B REM #¥¥% PRINT VIDEO DISPLAY TO THE LINE PRINTER ®&%
@ REM

108 DIM A%&4(14)

11@ FOR Z = @ To 15

128 A%(Z) = CRTI$(Z+@x64)
134 LPRINT &%(Z

148 NEXT 7

88 REM *¥%% SAMPLE PROGRAM DEMONSTRATING CRTI$ #%%
98 REM

120 PRINT CHR$(Z8): CHR#%(31)

118 PRINT "TYPE IN ONE LINE OF TEXT®

128 PRINT CRT{(3+8)3

130 A% = INPUTH(64)

140 PRINT:PRINT:PRINT

158 PRINT "THIS 15 THE LINE YOU TYPED: °©

168 PRINT: PRINT CRTI${(3:0544)

178 GOTO 178

TYPE IHN ONE LINE OF TEXT

I WIill PROCEED TO TYPE IN ONE COMPLETE LINE OF TEXTs IF POBSIBLE

THIG IS5 THE LINE YOU TYPED:

I WILL PROCEED TO TYPE IN OME COMPLETE LINE OF TEXTs IF POSSIBLE

Radie fhaek

PAGE 6 - 40

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™
80 REM #%% SAMPLE PROGRAM #3X DEMONSTRATING CRTI% *x%x

90 REM

100 INTEGER A~Z

118 DIM V$b64(16)

1260 PRINT CHR$(Z8)3 CHR$(31)

138 PRINT "TYPE IN AS MUCH AS YOU WISH--PRESS <ENTER> TO STORE DISPLAY"
140 A% = INKEY$%: IF &% < " " THEN 140
15@ PRINT CHR&(Z8): CHR$(31)35 A%

160 A% = INKEY®: IF A% < " " THEN 190
170 PRINT A%$s

180 GOTO 160

19@ REM *¥¥% CHECK FOR VALID KEY ##%
200 IF A% = CHR${8) THEN 170

2i@ IF A% = CHR$(13) THEN 230

220 GOTO 160

F30 REM *%¥% READ VIDEO #%%

240 ROW = CRTX: COL = CRTY

250 FOR LN = @ TOo ROW -~ 1

260 VELN) = CRTIS{LNs@s&4)

278 NEXT LN

280 VE(ROW) = CRTIH(ROW: @ COL)

9@ PRINT CHR®(28)5 CHR$(31)3 "TEXT STORED--PRESS <ENTER> TO SEE ITH
300 A% = INPUTS{L)

310 FOR LN = @ TO ROW

320 PRINT V&{LN)3

230 NEXT LN

Radie fhaek

PAGE 6 - 41

MODEL I/ITI COMPILER BASIC BASIC KEYWORDS

TRS-80™

-— FUNCTION --

CRTR
Move Cursor

CRTR may only be used in a PRINT statement. PRINT CRTR makes
the cursor move in relation to its present position on the video
screen. If this causes the cursor to "move off the display",
the cursor will wrap around.

CRTR works by performing this calculation:

the number of 'rows' and ‘columns' you specify
+ the cursor's present row and column position

o — o ——— - — " 7 T B o o W Y S " T W o " — " T o~ ——_—— " — -~ > o T—— -

the cursor's new row and column position

If the sum of the rows is greater than 15, BASIC will perform a
MOD 16. If the sum of the columns is greater than 63, BASIC
will perform a MOD 64. ,

For example, if the cursor is presently at row 10, column 50,
and you execute a CRTR(10,20) statement, BASIC will compute the
sum of the two rows and the two columns:

Row Column
CRTR specification: 10 20
Present cursor position: +10 + 50
Totals: 20 70

The results are both outside the range of the video screen.
BASIC will then perform a MOD 16 on the row total (20 / 16 =1
remainder 4) and a MOD 64 on the column total (70 / 64 = 1
remainder 6). The result of this is row 4, column 6.

Note: See CRT for an illustration of row and column positions.

Radio fhaek

PAGE 6 ~ 42

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

Examples

If the cursor is currently at row 10, column 50 —-—--
PRINT CRTR(2, 10)
causes the cursor to more to row 12, column 60.

PRINT CRTR(2, 10);"x"

causes the cursor to move to row 12, column 60. It prints the X
at the next column position -- row 12, column 61.

PRINT CRTR(6,40); "*#**"

causes the cursor to wrap around to row 0, column 26. The ***%%
is printed at beginning at the next column position -—- row 0,

column 27.

Sample Program

86 REM 4% SAMPLE PROGRAM DEMONGTRATING CHTR ¥®x

@ REM

198 PRINT CHR$(2833 CHR%(31)

118 PRINT CRT@Gs@) 3" K" s

128 PRINT CRTR{14@337X"s

138 FOR I = 1 TO 538 = REM #x% THESE THO LINEES SET A PAUGE #x%#
143 MNEXT I : REM #%#% AFTER EACH X IE PRINTED ##%

158 GOTO 126

Badis fhaek

PAGE 6 - 43

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

~— FUNCTION --

CRTX
CRTY
Find Cursor Position

CRTX returns the row and CRTY returns the column of the current
cursor position.

Note: See CRT for an illustration of row and column positions.

Examples

If the cursor is currently on row 10, column 15 of the video
display:

R = CRTX
Stores 10 in R
C = CRTY
Stores 15 in C
PRINT "CURSOR I35 IN ROW "; CRTX; " COLUMN "; CRTY

Prints 'CURSOR IS IN ROW 10 COLUMN 15°'.

Sample Program

Radio fhaek

PAGE 6 - 44

MODEL I/III COMPILER BASIC BASIC KEYWORDS

85

G
18
11@
128
136
148
15
1&é
178
188

TRS-80™

REM *#%% DAMPLE PROGRAM DEMONGTRATING CRTXs CRTY *#%
HEM

FRINT CHR&{28)3 CHR$(31)

FRIMT "TYPE aM <X> ANYWHERE ON THE BOREEN ~—-?

FRIMT *YOU MAY UBE <SBPACE BARX AND <ENTER:> TO POSITION CURBOR®
A% = INKEY$®

PRINT A%:

IF A% <> "YX° THEM 1738

ROW = CRTX @ COL = CRTY

FHINT 3 PRINT

PRINT "YOUR <X> I8 ON ROW"3: ROW: * AND COLUMNY3: COL.

TYRE aN <X>r ANYWHERE ON THE SCREEN -
YOU MAY USE <SPACE BARX AND <ENTER> TO POBITION CURSBOR

X

YOUR <X> IS5 ON ROW 7 AND COLUMN 1
STOP LINE 180

Radie fhaek

PAGE 6 - 45

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

-—- FUNCTION --

CVD
Convert to Real Value

CVD converts the 'number' to a real number.

Examples

PRINT CVD(30000) + CvD(10000)

Converts 30000 and 10000 to real numbers, performs real number
addition, and gives the correct answer. (See explanation on
numeric operations in the chapter on BASIC Concepts.)

Sample Program

B8O REM *¥%% SAMPLE PROGRAM DEMONSTRATING CVD ®#%%

7@ REM

188 PRINT "GINCE 38028 IS5 AN INTEGER®

1180 PRINT "BUT 68006 IS8 QUTSIDE THE INTEGER RANGE®

128 PRINT *THE PROBLEM 30088 + 30800 CAUSES THIS TO HAPPEN ...°
13@ PRINT 30626 + 300686 = "5 30006 + 30000

148 PRINT

150 PRINT

168 PRINT "USING CVD TO CONVERT BOTH OPERANDS TO REAL NUMBERS®
173 PRINT "THE PROBLEM IS BOLVED CORRECTLY ...°

180 PRINT "322000 + 30800 = "3 CVD(32280) + CVD{3DRR0)

Radie fhaek

PAGE 6 - 46

MODEL I/III COMPILER BASIC BASIC

KEYWORDS

TRS-80™

®RU
SINCE 3o IS AN INTEGER
BUT 620G IS5 OQUTSIDE THE INTEGER RANGI
THE PROBLEM 30088 + 30D00@ CAUSES THIS TO HAPPEN ...
NUMERIC OVERFLOW ERRGOR LINE 138
32767

USING CVD TO CONVERT BOTH OFERANDS TO REAL NUMBERS
THE PROBLEM I8 SOLVED CORRECTLY ...

TOB0BoR + 30008 = LA

STOP LINE 186

Radio fhaek

PAGE 6 - 47

MODEL I/III COMPILER BASIC BASIC KEYWORDS

=~ PUNCTION --

CVI
Convert to Integer Representation

CVI returns the largest integer not greater than the ‘'number’'.
Por example, CVI(1.5) returns 1; CVI{(-1.5) returns ~2. The
result is always a two-byte integer.

Since integers are stored in two bytes and real numbers are
stored in eight bytes, converting a number to its integer
representation changes its storage format. BASIC will execute
numeric operations, such as addition, subtraction,
multiplication, and division, much more guickly with integers
than with real numbers.

Examples

A —- - — - o

PRINT CVI{15.0075)
Prints 15.

PRINT CVI(~-15.0075)
Prints =~16.

PRINT CVI{(6.1 + 2.2)
Prints 8.

A = CVI({X)

Assigns the integer representation of X to A.

Radie fhaek

PAGE 6 - 48

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™
Sample Program
82 REM *%% SAMPLE PROGRAM DEMONSTRATING CVI *%%

2@ REM

188 PRINT "ENTER A NUMBER WITH A FRACTIONAL VALUE (DDDD.DDDD)"
118 INPUT N

1200 PRINT "THE INTEGER PORTION IS"3; CVI(N)

130 GOTO 100

*#RU

ENTER A NUMBER WITH A FRACTIONAL VALUE <(DDDD.DDDD)
7 2.825

THE INTEGER PORTION IS =

ENTER A NUMBER WITH A FRACTIONAL VALUE (DDDD.DDDD)
7 378.050

THE INTEGER PORTION IS5 378

ENTER A NUMBER WITH A FRACTIONAL VALUE (DDDD.DDDD)
”

Radio fhaek

PAGE 6 - 49

BASIC EEYWORDS

-— STATEMENT --

DATA
Store Program-Data

The DATA statement lets you store data inside vour program Lo be
accessed by READ statements. The data items will be read
seguentially, starting with the first item in the first DATA
statement, and ending with the last item in the last DATA
gtatement.

DATA statements may appear anywhere it is convenient in the
program. Generally, they are placed together, but this is not
reguired. It is important that the types of data match up with
the corresponding variable types in the READ statement.

5= 1

The data in DATA statements may only be constants. No variable
or expressions are allowed.

]

Radie fhaek

PAGE 56 50

§

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

Examples

B T ———

DATA "NEW YORK", "CHICAGO","LOS ANGELES", "PHILADELPHIA™
This line contains four string data items.

DATA 3.72,3.14159,47.29578,378,535
This line contains five numeric data items.

DATA "SMITH, T.H.",38,"THORN,J.R.",41

This line contains two string and two numeric data items.

Sample Program

B@ REM ##% DAMPLE PROGRAM DEMOMSTRATING DATA #u%

@ REM

128 DIM SALEE(&)

118 FOR X = 1 TO &

128 READ DEPTS

132 PRINT "INPUT AMOUNT SOLD IN THE "sDEPT$: * DEPT. %3

140 INPUT GDALEG{X)

158 HNEXT X

1&8 DATA "PROGUCEY s "MEATY « "EBAKERY" s " CANNED GOODEY « "DAIRY® « "FROZEN FOQODE®

%R

IHPUT AMOUNT SOLD IN THE PRODUCE DEPT. 17 25
INPUT AMOUNT BOLD IN THE MEAT DEPT. 7 58

INPUT AMOUNT SOLD IN THE BAKERY DEPT. 7 15

INPUT AMOUNT SOLD IN THE CANNED GOODE DEFT. =7 23
INPUT AMOUNT SOLD IN THE DAIRY DEPT. =7 38

INPUT AMOUNT SOLD IN THE FROZEN FOODB DEPT. 29 32
STOP LINE 168

Radio fhaek

PAGE 6 -

W
oot

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

== PUNCTION -—-

DATES
Get Today's Date

This function lets you display today's date and use it in the
program.

The operator sets the date initially when TRSDOS is started up.
When you request the date, BASIC will display it in the fashion:

04/28/79

which means April 28, 1979.

Example

. — o o Voot o7

PRINT DATES
which returns:

04/28/79

Sample Program

o ———— o - - -

820 REM ##% SAMPLE FPROGRAM DEMONSTRATING DATES ®xx
28 REM

188 PRINT DATES

110 PRINT "INVENTORY CHECK: *

128 IF DATES «» *12/31/781" THEN 1468

138 PRINT "Taday iz the Jast davy of December 1981.°
14 PRINT *Time to perfarm the monthly inventory,®

Radio fhaek

PAGE 6 - 52

MODEL I/III COMPILER BASIC

TRS-80™

BASIC KEYWORDS

15 GOTO 218
168 D = DATES A% = SEGHE(DEs 4+ 2D
178 B o= Val.{a%)
180 M$ = SEGH(DE: 1. 27
190 IF M$ = "12" THEN PRINT 31i-B3 " davsz until
200 PRINT "Don®t woarry about December inventorys
i@ STOP
*R)
@plL/a1/81
INVENTORY CHECK:
Don*t worry about December inventorss how aboult this

5ToP LINE 210

inventory
how about this

time. H

month’s7?

GOTO

Radio fhaek

PAGE 6 - 53

=210

moanth*s?"

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

-- STATEMENT --

DEF
Define Function

The DEF statement lets you create your own function. Once you
have defined the operations your function will do, all you have
to do is call the new function by name and the operations will
be automatically performed. To call it by name, after it has
been defined with the DEF statement, simply reference the
'function name' in an expression. You can use it exactly as you
might use one of the built-in functions, like SIN, ABS and
STRINGS.

The type of variable used for function name determines the type
of value the function will return. For example, if 'function

name' is an integer variable, then that function will return an
integer even if the data used in the function are real numbers.

You may pass any data with the same type of value to the 'dummy
variable'. Furthermore, you may use the same variable name as
the ‘'dummy variable' in your program without the °‘dummy
variable' interfering with your program variables.

Examples

DEF R(A) = INT(RND(O) * (A) + 1)

This statement defines a function which returns a random whole

number between 1 and A. The value for A is passed in a
statement using R such as this:

Y = R(X)

Badie faek

PAGE 6 - 54

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

If X eguals 10, a random whole number between 1 and 10 will be
assigned to Y.

DEF SLS$(X) = STRINGS({X, "-")

Defines the function names SLS$ which returns a string of hyphens
X characters long. The value for X is passed in a statement
using SL$ such as:

PRINT SL$(30)

Which prints a string of 30 hyphens.

DEF DIV{X,Y) = SQR{X)/SQR(Y)

Defines a function named DIV which divides the square root of X
by the square root of ¥. It can be used like this:

PRINT DIV{100, 25)

Which prints 2.

Sample Programs

o - - - - - o’ oo ‘"

8@ REM #%% DAMPLE PROGRAM #1 DEMONETRATING DEF #¥%%
9@ REM

180 DEF DOUBLE(N)Y = N * 2

118 PRINT "INPUT A& NUMBER®

128 INPUT X

138 PRINT DOUBLEX)

148 GOTO 118

* R
INPUT & NUMBER
725
it
NPUT & NUMBER
T
1568

wnd et

PAGE 6 — 55

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

8B REM *%% SAMPLE PROGRAM #2 DEMONGTRATING DEF *#%

¢8 REM

102 DEF SOUND(X) = 1887 + SQR{Z73 + X) / 146.52

118 PRINT "INPUT AIR TEMPERATURE IN DEGREES CELSIUL™

128 INPUT T

138 PRINT "THE SPEED OF SOUND IN AIR OF"3 T3 "DEGREES CELSIUS 18*
140 PRINT SOUND{(T): "FEET PER SECOND.®

*#RU

INPUT AIR TEMPERATURE IN DEGREES CELEIUG

7 b3

THE SPEED OF SOUND IN AIR OF 63 DEGREES CELSIUS IS
1@868.11 FEET PER BECOND.

STOP LINE 148

Radie fhaek

PAGE 6 - 56

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

-~ STATEMENT --—

DELETE
Delete Record From Disk File

This statement deletes a record from a disk file. After a
record has been deleted, it is unreadable.

Examples

—— ot o s ot o

DELETE #1, KEY=2
Deletes the 2nd record in file-unit #1.
DELETE #A%, KEY=NAMESS

Deletes in file—unit A% the ISAM record with a key matching the
value of NAMES.

DELETE #START% + INC%, KEY=RECORD%
Deletes in file—unit START% + INC% the record numbered as
RECORDS%.

Sample Program

o s O o — 7y o i o - -

See the chapter on data files.

Radie fhaek

PAGE 6 - 57

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

~= FUNCTION =--

DIG
Compute Number of Numeric Characters

DIG computes the number of numeric characters in the ‘string’.
It will quit searching for numeric characters as soon as it hits
a non-numeric character. For example, in DIG("16A5"), DIG will
quit counting numeric characters when it reaches the A, since A
is non-numeric, and will return the current total, 2.

DIG treats blanks, signs, decimals, and exponents as numeric
characters.

Examples

PRINT DIG("1.2E5")
Prints 5
PRINT DIG("33 44")
Prints 5. (The blank is considered part of the numeric field).
A = DIG("-32")
Prints 3.
X = DIG(BS)
Assigns the number of numeric characters in B$ to X.
PRINT DIG("B5")

Prints 0. (DIG quits searching for numeric characters after it
reads the non-numeric character, B.)

PRINT DIG{"5B324")

Radie fhaek

PAGE 6 - 58

MODEL I/III COMPILER BASIC BASIC KEYWORDS

Prints 1.

TRS-80™

Sample Program

i@
118
128
138
148
156
168
178
1B
196
pelritrd
Zié
22
=Aa
248
250
peraxr
27
288
29R
208
310
yedr

#RUJ

REM
REM
REM
REM
REM
REM
REM
REM
REM
REM

*##% DEMO OF DIG FUNCTION TO EDIT A STREAM OF DATA *#%

T% CONTAINS THE INPUT STREAM
MAXPSNL CONTAINS THE LENGTH OF THE INPUT STREAM
PENY POINTS TO THE CURRENT START-EDIT POSITION

CRNTS CONTAING THE CURRENT STRING TO BE EDITED
VLULEN I8 THE LENGTH OF THE FIRST NUMERIC FIELD

A ZERO LENGTH INDICATES A NON-NUMERIC FIELD
ViU ValL.ue OF THE FIRST NUMERIC FIELD

DIM T$&64: CRNT%44

PRINT

"ENTER A BETREAM OF NUMBERES.: SEFARATED BY COMMAG®

LINE INPUT 7%
MAXPSNA = LEN(TS)

PENZ

i

CRMTS = DEGH(THs PBNL)
VLULENY = DIG{CRNTS)
IF VLULENZ = @ THEN 388

VLU

PRINT
PENY

VAL {CRNTS)
*FOUND THIS NUMBER: "3 VLU
PGNL + VLULENS + 1

IF PSNY » MAXPSNY THEN PRINT @ GOTO 218

HOTO

250

ENTER A STREAM OF NUMBERSs SEPARATED BY COMMAS
7 3548652134589

THIS NUMBER: 3

THIS NUMBER: 436

THIS NUMBER: =2

THIE NUMBER: 34

THIS NUMBER: 89

FOUND
FOUND
FOUND
FOUND
FOUND

Radie fhaek

PAGE 6 - 59

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

=~ STATEMENT --
DIM

Define String Variables and Arrays

This statement defines the length of string variables and
arrays.

Defining String Variables

In Compiler BASIC, each string variable is stored according to
the length specified in the STRING statement. If you do not

have a STRING statement in the program, each string variable is
stored as if it contains 255 characters.

To override this, you may use DIM to specify the length of a

Radie fhaek

PAGE 6 - 60

MODEL I/IIXI COMPILER BASIC BABSIC KEYWORDS

TRS-80™

particular string variable name. For example:
DIM NAMES10

allots 10 characters for NAMES.

Defining Arrays

P L L T A ———

An array is a way of storing an entire list of data under one
variable name. Each data element is identified by one or two
subscripts. If each data element in an array contains only one
subscript, it is called a single dimensioned array; if it
contains two subscripts, it is a two-dimensioned array. No more
than two dimensions are allowed in Compiler BASIC.

All arrays must be defined with a DIM statement before they can
be used in the program. For example:

DIM A(2)

Allots room in memory for an array named A which can contain up
to 3 numeric data elements (0,l,and 2}. For example, each of
these subscripted variables could be assigned:

a{0) = 3.5
A{1} = 40000
A{2) = 5,15

A double dimensioned array is defined in this manner:
X(1,1)

This allots room for a double dimensioned array named X which
can contain up to 2 numeric data elements in the first dimension
and 2 numeric data elements in the second dimension. This array
might be programmed to contain:

X(0,0) = 25.1 X{(0,1) = 13.7
X{(1,0} 22.2 X(1,1) = 32.6

i

Arrays may be integer or string with the proper type declaration
tag. A string array will allot 255 characters for each data
element unless the string length is defined. For example:

AS(10)

Allots room for an array named AS with up to 11 string data
elements. Memory is set aside for each of the 1l data elements

PAGE 6 - 61

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

to contain 255 characters for a total of 255x11=2805 characters.
AS$5(10)

This also allots room for an array named A$ with up to 11 string
data elements. However, in this array, each element may contain
only 5 characters for a total of 5x11=55 characters.

Examples

DIM A(100), BS$5, C%(9,9)
The numeric array A is defined with 101 elements, and C% is
defined containing 100 (10 * 10) elements. The string B$ can
contain no more than 5 characters.

DIM DATAS$3, DAVISS$6, DVISL

The strings DATAS$, DAVISS$, and DVIS$ are defined containing 3, 6,
and 1 characters respectively.

DIM MS$1(200), C$2(100) ‘

The array M$ is defined to contain 201 one-character string data
elements. Array C$ may contain 101 two-character string data
elements.

Sample Programs

88 REM #%#% SAMPLE PROGRAM #1 DEMONSTRATING DIM ##x

9@ REM

188 DIM AXL(16,10)

118 PRINT "SALES DATA WILL BE STORED IN ARRAY AYX AE FOLLOWE®
120 PRINT CHR$(28)35 CHR%(31) @ PRINT * "y "MONTH 1"y "MONTH 2*s "MONTH 3"
138 FOR X = 1 TO 4

148 PRINT : PRINT "ITEM "5 X

156 FOR Y = 1 TG 3

160 READ AL{XsY)

178 PRINT AZ(XsY)s

186 NEXT Y

Radio fhaek

PAGE 6 - 62

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

1986 NEXT X

208 PRINT: PRINT "INPUT ITEM # AND MONTH #°

218 INPUT XsY

228 PRINT "SALES DATA FOR ITEM "3 X3 "AND MONTH"3: Y3 "I8 @ "5 AXL(X:«Y)
238 GOTO 200

240 DATA 34+63455:66533522:11599+88+77566:55

MONTH 1 MONTH 2 MONTH 3

ITEM 1 24 63 55
ITEM 2 bé 33 22
ITEM 3 11 99 88
ITEM 4 77 b6 55
INPUT ITEM # AND MONTH #

7 3

7 3

éALEQ DATA FOR ITEM 3 AND MONTH 3 I& @ BB

Radio fhaek

PAGE 6 - 63

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80"™

13 REM #¥# SAMPLE PROGRAM #2 DEMONSTRATING DIM #x%
2 REM

A PRINT CHRE$(Z28)3 CHR%(31)

40 DIM L${1@:3)

5 0M o= @

@ PRINT "MEMBERSHIP ARRAY I8 DIMENSIONED FOR UP TO 12 MEMBERS®
T M =M + 1

80 PRINT *INPUT NAME: ADDRESS: AND PHONE # OF MEMBER "3 M
5@ FOR X = L TO 3

127 INPUT L${MsX)

118 NEXT X
1280 IF M = 180 THEN 148

133 PRINT "I8 THERE ANOTHER MEMBER (Y/M)?®

148 INPUT A%

IBB IF &% = *Y"* THEN 7@

1AB PRINT: PRINT "THE LIST I8 STORED AS FOLLOWS ¢ ¢

170 PRINT "NAME": "ADDRESS® "PHONE®

180 PRINT STRINGS (44 ®~")3

1900 FOR I = 1 TO M
gl FOR J = 1 TO 3
216 PRINT L#{IsJ)s
220 NEXT J
233 PRINT
AR ONEXT I

MEMBERSHIP ARRAY I8 DIMENSIONED FOR UP TO 18 MEMBERS

INPUT

MAME, ADDREGS. AND PHONE # OF MEMBER 1

7 BANDY WILLIAMES
7 3zB@ ABH PARK

7 B4

hasy

I8 THERE ANOTHER MEMBER (Y/N)

7Y
INPUT

NAMEs ADDRESEs AND PHONE # OF MEMBER 2

7 LINDA GORDON

7 3507 HARRIGON

7 267048

I8 THERE ANOTHER MEMBER {(Y/N)

7 N

THE LIST IS STORED AB FOLLOWE =

NAME

ADDRESS PHONE

B T T T L L e X e p—p——

SANDY WILLIAME 32800 ASH PARK 2844447
LINDA GORDOM 3587 HARRISON 2670459
STOP LINE 248

Radie fhaek

PAGE 6 - 64

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

== STATEMENT --

END
Terminate Program Compilation

END terminates compilation of your main program. This means,
when you are RUNning or COMPILEing a program, the Compiler will
quit compiling and assume the program has ended as soon as it
encounters an END statement. Since this is different from the
way END works in the BASIC Interpreter, it is important that you
remember not to use END in the middle of a program if you want
to use the lines following the END statement. Use STOP for that
purpose.

Some versions of BASIC require END as the last statement in a
program. In Compiler BASIC this is optional. However, when
using a subprogram, you must put an END statement as the last
statement in your main program. Otherwise, BASIC will not be
able to separate your main program from the subprogram.

Note: Also see SUB, SUBEND, CALL, and the chapter on Segmenting
Programs.

Example

END
This statement "turns off" the compiling of your program. BASIC

then assumes there are no more main program lines following this
statement.

Sample Program

Radie fhaek

PAGE 6 - 65

MODEL I/III COMPILER BASIC BASIC KEYWCRDS
TRS-80™
10 PRINT "EXECUTING THE MAIN PROGRAMY
2@ CallL "SUBPROGYS "THIS IS FROM THE MAIN PROGRAM®
3@ PRINT "BACK TO THE MAIN PROGRAM?
4% END
188 SUBR "SUBPROG": A%
11@ PRINT "NOW IN THE BUBPROGRAM®
128 PRINT A%
138 SUBEND

Radio fhaek

PAGE 6 — 66

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

== FUNCTION -—-

EOF
Notify if End of File

This function tells whether the end~of~file {(EQF} has been

reached during sequential input. If the EOF has been reached,

it returns a value of -1 (TRUE). Otherwise, it returns a value
of 0 (FALSE).

Examples

——— g "~ o - -

IF EOF(#1) = -1 THEN CLOSE #1

If the end of file has been reached in file-unit 1, the file is
closed.

STATUSS = ECOF{#A%)

File-unit A%‘'s EOF status (-1/TRUE or (/FALSE) is stored in
STATUSS%.

Sample Program

o e e S o " T o > o

See Chapter 4.

Radie fhaek

PAGE 6 ~ 67

MODEL I/III COMPILER BASIC BASIC KEYWORDS

- FUNCTION --

ERR
Get Error Code

ERR returns the code of the error that happened in the program.
It is normally used inside an error-handling routine accessed by
ON ERROR GOTO. The section on error codes in the Appendix gives
the error code for each error.

Examples

IF ERR = 7 THEN 1000 ELSE 2000

If the error is an QOut of Data error {code 7) the program
branches to line 1000; if it is any other error, control will
instead go to line 2000.

Sample Program

N e s s e S " o

8@ REM #%% SAMPLE PROGRAM DEMONSTRATING ERR ##%%

@ REM

168 ON ERROR GOTO 158

118 DATA 1 2

128 READ As Bs €

138 PRINT "A = %3 43 ¢ = fs By * C = "3 C

1483 QTOP

158 IF ERR <» 7 THEN ERROR ERR

168 PRINT "YOU DON'T HAVE ENOQUGH DATA FOR ALL THE VARIABLES®

178 GOTO 138

*#RU
YOU DON'T HAVE ENOUGH DATA FOR ALL THE VARIABLEER
A= 1 B = 2 C= 1,082129 E+33

SToP LINE 148

Radie

PAGE 6 - 68

MODEL I/III COMPILER BASIC BABIC EKEYWORDS

TRAS-80™

- STATEMENT -

ERROR
Simulate Error

An ERROR statement in your program causes BASIC to act exactly
as if the specified error had occurred. You can specify an
error with its error code. The Appendix has a listing of error
codes and their meanings.

ERROR is primarily used in ON ERROR GOTO routines: either for
simulating the error that occurred or for testing the routine.

Examples

et s s . 7 s

ERROR 7

When your program reaches this line, an Out of Data error {code
7) will "occur®, and the Computer will print a message to this
effect.

IF ERR <> 5 THEN ERROR ERR

This line could be in the error handling routine initiated by ON
ERROR GOTO. It tells the Computer that if the error which
caused it to come to this routine was not an Input Syntax error
(code 5}, then print the appropriate error message.

Sample Program
108 INPUT N
11@ ERROR N

#RU
7N
INPUT SYNTAX ERROR LINE 108

Radie fhaek

PAGE 6 - 69

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

== FUNCTION ==

EXP
Compute Natural Exponential

EXP returns the natural exponential of the "number’, that is, e
to the power of "number’. This is the inverse of the LOG
function; therefore, X = EXP(LOG{(X)). The result is always a

real number.

Examples

o s i s i s ans

H = EXP(A)

Assigns the value of EXP(A) to H.
PRINT EXP(-2)
Prints the value .135335.
E = (Gl + G2 - .07) * EXP(.055 * (Gl + G2))

Performs the required calculation and stores it in E.

Sample Program

S G W o T owSSS . —_ i > >

18 PRINT "INPUT A NUMBER"
28 INPUT N
3@ PRINT "E RAISED TO THE N POWER IS5"s EXP(N)

48 GOTO 18

*RU

INPUT A NUMBER

7?7 546

E RAISED TO THE N POWER IE 2.B%166 E+24

Radie fhaek

PAGE 6 - 70

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

-= FUNCTION --

EXP10
Compute Base 10 Exponential

EXP10 raises 10 to the power of 'number'. As the inverse of
LOG10, X=EXP1l0(LOG10(X)). The result is always a real number.

Examples

X = EXP10(Y)
Raises 10 to the Y power and assigns that value to X.
PRINT EXP10(3)

Prints 1000.
X = (A + B) + EXP10(A)

Performs the calculation and records the result in X.

Sample Program

i@ INTEGER R

2@ PRINT *TaARLE OF RANDOM NUMPERS ... "

3@ FRINT P"ENTER MAXIMUM NUMBER OF DIGITS YOU WANT (UP TO 43¢
4@ INPUT L

533 X = EXPIBL)Y ¢+ R =¥ — 1

& FOR I = 1 TO 109

7@ PRINT INT(RND(@) % R)s

B NEXT I

F@ PRINT: GOTO 1@

Radie fhaek

PAGE 6 - 71

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

-- STATEMENT --

EXT
Define Address of External Program

You may interface an external object code program with your
BASIC program by using EXT. EXT names the external subroutine
and defines the memory address where the subroutine originates.
To call the routine, use CALL.

Note: See the chapter on Segmenting Programs.

Examples

EXT SUBPROG=&E000
the external routine named SUBPROG originates at the memory

address of hex EQ0QG0.

Sample Program

See the chapter on Segmenting Programs.

Radie haek

PAGE 6 - 72

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

~= STATEMENT --

FOR/NEXT
Establish Program Loop

FOR...TO...STEP/NEXT opens a repetitive loop so that a sequence
of program statements may be executed over and over a specified

number of times.

5 times

When BASIC executes the FOR statement for the first time, it
sets the ‘variable' to 'initial value'’. Then ‘variable® is
compared with ‘'final value'. If ‘variable' is greater than

@

Radie fhaek

PAGE 6 ~ 73

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

'final value', BASIC completes the loop and goes to the
statement following NEXT. (If ‘increment' is a negative number,
the loop ends when ‘variable' is LESS than 'final value'.)

If ‘'variable' has not yet exceeded 'final value' BASIC
continues executing the next statements until it encounters
NEXT. At this point, BASIC goes back to FOR and increments the
‘*variable' by the amount specified in step 'increment'. (If
'increment'® has a negative value, the 'variable' is actually
decremented.) STEP ‘increment' is often omitted, in which case
BASIC uses 1 as an increment. BASIC then repeats the whole
process, comparing ‘'variable’ with 'final value’.

Examples

FOR X = 1 TO 3

Sets up a loop which will be repeated 3 times: when X is 1, 2,
and 3. (Since no STEP increment is specified, an increment of 1
is used.)

This loop is closed by the following statement:

NEXT X

FOR I = 2 TO 6 STEP 2
Sets up a loop to be repeated 3 times: when I is 2, 4, and 6.
FOR I = 8 70 5 STEP ~1

Sets up a loop to be repeated 4 times: when I is 8, 7, 6, and
5.

Both of the loops above are closed by the statement:

NEXT I

Sample Programs

G s s s D S S i G D U, SO S DD AT

Radie §

PAGE 6 - 74

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

80 REM #¥%% BAMPLE PROGRAM #1 DEMONSTRATING FOR/NEXT ###%
@8 REM

i@ FOR I = 18 TCo 1 STEP ~1

11@ PRINT I3

128 NEXT I

*RU
18 9 8 7 6 53 4 3 2 1 BTOP LINE 12@

8@ REM #%% SAMPLE FROGRAM DEMONSTRATING FOR/NEXT ##%
@ REM

188 FOR I = 1 TG 3

119 PRINT "OUTER LOOP"

128 FOR J = 1 TO 2

138 PRINT * INNER L.OOP®
142 NEXT J
158 NEXT I
#RU
QUTER LOOF
INNER LOOP
INNER LOOP
QUTER LOGP
INNER LOOP
INMNER LOOP
OUTER LOOGP
INNER LOOP
INNER LOOP

STOP LINE 138

Radie Shaek

PAGE 6 - 75

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80"

~— STATEMENT --

GOSUB
Go to Specified Subroutine

GO SUB or GOSUB (the space is optional)} transfers program
control to the subroutine beginning at the specified line
number. Like GOTO, GOSUB is an unconditional or automatic
program branch which may be conditional if it follows a test
statement.

RETURN ends the subroutine by sending program control back to

the line immediately following the GOSUB statement. All
subroutines are ended by a RETURN statement.

Note: Also see RETURN,

Badie Maek

PAGE & - 76

MODEL I/III COMPILER BASIC BASIC XEYWORDS
TRS-80™

Examples

[———

GOSUB 1000

When this line is executed, control will automatically branch to
the subroutine at 1000.

IF A$ = "YES" THEN GOSUB 2000

Here, GOSUB is a conditional branch. If the condition is true,
then control will branch to the subroutine at line 2000.
However, if the condition is false, the program will immediately
advance to the next line. GOSUB 2000 will be ignored.

Sample Program

- - - - o - - "

88 REM *##% SAMPLE PROGRAM DEMONSTRATING GOSUR #x#%
8 REM

188 GOBUR 128

118 PRINT "BACK FROM THE SUBRCOUTINE® @ BTOP

128 PRINT "EXECUTING THE SUBROUTINEY

138 RETURN

*#RU

EXECUTING THE SUBROUTINE
BACK FROM THE SUBROUTINE
STOP LINE 110

Badie fhaek

PAGE 6 - 77

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

- STATEMENT -~

GOTO
Go To Specified Line Number

GO TO or GOTO (the space is optional) transfers program control
to the specified line number. Used alone, GOTO results in an
unconditional or automatic branch. However, a test may precede
the GOTO to effect a conditional branch.

Examples

e e o e e e " T

GOTO 100

When this line is executed, control will automatically be
transferred to line 100.

IF A = 1 THEN PRINT "CORRECT": GOTO 50

H

In this statement, GOTO is used as a conditional branch. If A
1, the Computer will print "CORRECT" and transfer controcl to
line 50. However if A does not equal 1, control will drop to
the next program line. GOTO 50 will be ignored.

Sample Program

12 REM *#%¥% SAMPLE PROGRAM DEMONSTRATING GOTO *#%
28 GOTO 48

25 PRINT "LINE 257

27 BTOR

3@ PRINT "LINE 3@°
35 GOTO 25
48 PRINT *LINE 48"
58 GOTC 3R

Radie fhaek

PAGE 6 - 78

MODEL I/I1I COMPILER BASIC BASIC KEYWORDS

TRS-80™

-= PUNCTION -~

HEXS
Compute Hexadecimal Value

HEX$ is the inverse of the HVL function. It returns a string
which represents the hexadecimal value of the 'number'. Since
the hexadecimal value is returned as a string, it cannot be used
in a numeric expression. You cannot add, subtract, multiply or
divide hex strings. You can concatenate them, though.

The hexadecimal string returned represents the value of the
stored ‘'number’'. Since the ‘number’' is an integer, it is stored
in two's complement notation. HEX$(-1) returns the hexadecimal
string "FFFP", since this is the way -1 is stored in two's

complement notation. An explanation on the storage of integers
is in the Programmers Information Section.

Examples

B R T en——

PRINT HEX$(30), HEX$(50), HEX$(90)
Prints the following strings:

001E 0032 005A

PRINT HEXS${-1), HEXS(-16), HEX${(-32768)
Prints the following strings:

FFFF FFFO 8000

Y$ = HEX$(X/16)

¥$ is the hexadecimal string representing the integer gquotient

Radio fhaek

PAGE 6 - 79

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™
X/16.
Sample Program
8@ REM %%% SAMPLE PROGRAM DEMONSTRATING HEX$ #x%

PP REM
108 PRINT "INPUT A DECIMAL NUMPER FROM 1 TO 327&67¢

118 INPUT DEC
128 PRINT "HEXADECIMAL VALUE I8 "3 HEX$(DEOC)

130 GOTo 188

#RU

INPUT A DECIMAL NUMBER FROM 1 TO 32747
7?7 456.89

HEXADECIMAL VALUE IS Q1C8

Radie fhaek

PAGE 6 - 80

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

~= FUNCTION ~-

HVL
Convert Hexadecimal String

HVL is the inverse of the HEX$ function. It returns the integer
value of a hexadecimal string. Since integers are stored in
two's complement notation, hexadecimal values over 7FFF will
return negative integers.

Note: An explanation on the Storage of Integers is included in
the Programmers Information Section

Examples

PRINT HVL("7FFF")
Prints 32767.
PRINT HVL("8000")
Prints -32768.
PRINT HVL("4C IS THE CODE FOR L")
Prints 76. (HVL read the hexadecimal number "4C" and then
stopped its search since the next character was not a

hexadecimal character.)

H = HVL{"F")

Assigns the value 15 to H.

Sample Program

e s e s D, o — > T W o T -

Radie fhaek

PAGE 6 - 81

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

80 REM ##% SAMPLE PROGRAM DEMONSTRATING HVL ##x
@ REM

188 PRINT "TYPE A HEXADECIMAL NUMBER®

11@ INPUT A%

120 N = HVL(A$)

138 IF N < 8 THEN D = N + 655336 ELSE D = N

148 PRINT "THE INTEGER REPRESENTATION FOR "3 a%3 " I "3 N
15@ PRINT

i6@ PRINT A$3 " CONVERTED TO A DECIMAL NUMBER IS": D
178 PRINT

188 GOTO 166

#Rij

TYPE A HEXADECIMAL NUMBER

? 7FFF

THE INTEGER REFRESENTATION FOR 7FFF IR 32767

7FFF CONVERTED TO A DECIMaAL NUMBER IG6 32767

Radio fhaek

PAGE 6 - 82

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80%

== STATEMENT --

I¥...THEN...ELSE
Test Conditional Expression

IF...THEN...ELSE tests the 'relation’ to see if it is true. If
it is true and there is more than one relation separated by
logical operators, BASIC will continue testing each relational
and logical operation in the statement.

If the 'test' returns a true result, the statement or
statements following THEN will be executed. If the test returns
a false result, control will jump to the statement or statements
following ELSE, or, if ELSE is omitted, to the next program
line.

The conditional statement GOTO 50 may be replaced by simply a
line number.

Examples

[PSP —

IF X > 127 THEN PRINT 7"QUT OF RANGE" : STOP

If X is greater than 127, the statement will be printed and
program execution will stop. If X is not greater than 127,
control will jump down to the next program line, skipping the

&

PAGE & — 83

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

PRINT and STOP statements.
IF X > 0 AND Y <> 0 THEN Y = X + 180

If both expressions are true, then Y will be assigned the value
X + 180. Otherwise, control will pass directly to the next
program line, skipping the THEN clause.

IF A < B THEN PRINT "A < B" ELSE PRINT "B <= A"

If A is less than B the Computer prints the fact and then
proceeds down to the next program line, skipping the ELSE
statement. If A is not less than B, the Computer jumps directly
to the ELSE statement and prints the "B <= A". Then control
passes to the next statement in the program.

IF AS = "YES" THEN 210 ELSE IF AS$ = "NO" THEN 400 ELSE 370.

If AS is YES then the program branches to line 210. If not, the
program skips over to the first ELSE, which introduces a new
test. If AS$ is NO then the program branches to line 400. If AS
is any value besides NO or YES, the program skips to the second
ELSE and the program branches to line 370.

IF A > .001 THEN B= 1/A : A = A/5 : ELSE 1510

If the value of A is greater than .001, then the next two
statements will be executed, assigning new values to B and A.
Then the program will drop down to the next line, skipping the
ELSE statement. But if A is less than or equal to .001, then
the program jumps directly over to ELSE, which then instructs it
to branch to 1510. Note that GOTO is not required after ELSE.

Sample Programs

8@ REM ##% SAMPLE PROGRAM #1 DEMONSTRATING IF/THEN *##
70 REM

108 PRINT "INPUT THE NUMBER B OR 1*

11@ INPUT N

120 IF N = @ OR N = 1 THEN STOP ELBE PRINT *NOT A BINARY DIGIT"

#RU

INPUT THE NUMBER @ OR 1
71

STOP LINE 128

Radie fhaek

PAGE 6 - 84

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

88 REM *¥% SAMPLE PROGRAM #2 DEMONETRATING IF/THEN ®#%

@ REM

198 PRINT "DO YOU WANT TO TEST THE IF/THEN STATEMENT®

118 INPUT A%

128 IF A% = "YES" THEN PRINT "YOU INPUT YES" @ GOTO 188: ELSE IF A% =
TN THERN BTOP ELSE PRINT PINFUT YES OR NO® @ GOTO 116

*FiJ

DO YOU WANT TO TEET THE IF/THEN STATEMENT
7 YES

YOU INPUT YES

DO YOU WaNT TO TEST THE IF/THEN STATEMENT
7 MNO

ETOP LINE 120

18 REM ##% IF...THEN...ELBE STATEMENT =#%
2B INPUT PROMPT="YES OR NO (Y/N}7 "5 R$
aB IF R% = *Y" THEM 48

32 IF R$& = "N THEN 38 EFLSE =280
47 PRINT "THAT’S BEING POSITIVED®
45 STOP
5@ PRINT "WHY S0 NEGATIVE?S
55 BTOP

RURN

YES OR NO (Y/NY7 Y

THAT’S BEING POSITIVE!

STOP LINE 45

#*RUN

YES OR MO (Y/N)Y7 N

WHY S0 NEGATIVE?

STOP LINE 55

Radie fhaek

PAGE 6 - 85

MODEL 1I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

-= FUNCTION --

INKEYS
Get Keyboard Character if Available

Returns a one-character string from the keyboard without the
necessity of having to press ENTER. If no key is pressed, a
null string (length zero) is returned. Characters typed to
INKEYS$ are not echoed to the Display.

Example

AS = INKEYS

When put into a loop, the above program fragment will get a key
from the keyboard and store it in AS$. If the line above is used
by itself, when control reaches it and no key is being pressed,
a null string ("") will be stored in AS.

Sample Programs

1@ REM #¥% INKEY$® FUNCTION #%%

20 DIM C%1

30 PRINT CHR#%{(2B)3; CHR$(31)

4 PRINT "ECHO PROGRAM — TYPE ANY TEXT KEY AND IT WILL BE ECHOED®
5@ A% = INKEY®

&8 IF A% = "' THEN 58
65 IF A% < " Y THEN 98
78 OPRINT A%3

8 GOTO 58

i IF A% = CHR$(B1) THEN BTOP
128 PRINT "CONTROL CHARACTERS ARE IGNORED - PRESS <BREAK> TO aUIT®
118 GOTO 3@

ECHO FPROGRAM — TYPE ANY TEXT KEY AND IT WILL BE ECHCOED
DCONTROL. CHARACTERS ARE IGNORED — PRESE <BREAK:> TO GUIT

Badie Sfhaek

PAGE 6 - 86

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

~~ STATEMENT -~

INPUT
Input Data

This statement inputs data from the keyboard.

When executed, INPUT displays the prompt string or a guestion
mark. When you press <ENTER>, INPUT edits the input stream
until it satisfies the input ‘variable-list’., If the expected
number of data items are found, INPUT is complete. If more are
needed, INPUT displays another guestion mark and walits for
further input.

Special Keys During INPUT

<ENTER> Ends the line at the current cursor position.

shift <- Erases the line and starts over.

<SPACEBAR> Advances the cursor and types a blank space.

<= Backspaces the cursor and erases character.

<BREAK> Halts the INPUT and gives control to the <BREAK>
handler.

All other keyvs are accepted as data for the input line.

Examples

e o s s s ey e o

Radio /1

PAGE 6 - 87

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

INPUT A, B, C, D

Inputs values for the four variables listed.
INPUT AS

Inputs a string value for AS

Sample Program
10 REM *%% TNPUT STATEMENT ***
20 DIM NAMES$25
30 PRINT "ENTER DATA LIKE THIS: name, age"
40 INPUT NAMES, AGES%
50 PRINT: PRINT "HERE'S HOW THE DATA WAS EVALUATED:"
60 PRINT "NAME: '"; NAMES$; "'"
70 PRINT "AGE: '"; AGE%; "*'"
80 PRINT
90 GOTO 30

Input Stream Edit Process

U A S WO O —

Leading spaces are always ignored. Beyond that, the editing
process used depends on whether the target variable is string or

numeric.

String Input

The string field starts with the first non-space character, and
ends when a comma or carriage return 1is encountered. If a comma
is encountered before any non-space characters, the target
variable is given the null-string wvalue, and input continues
with the next target variable (if any). If a carriage return is
encountered before any non-space characters, INPUT displays a
new input buffer and waits for more data for the same target
variable.

There is a special case when the first non-space character is a
double-quote '"'. This causes all subsequent characters,
including commas, to be accepted intoc the string, up to the next
un-paired guote or carriage return (<ENTER>).

Toc include a double-guote in a quoted string, use paired
double—-gquotes.

For example, the table below describes the result of the

Badie fhaek

PAGE 6 - 88

MODEL I/III COMPILER BASIC BASIC REYWORDS

TRS-80™

statement
INPUT XS

under various conditions (<ENTER> represents a carriage return;
"T" represents a leading or trailing blank space and is used
only where necessary for illustration or emphasis.)

Data stream Result in XS$

J.D. POWERS <ENTER> 'J.D. POWERS'

“~"J.D. POWERS™ ™7, 'J.D. POWERS !
FIRST, SECOND, THIRD <ENTER> "FIRST'

, FIRST <ENTER> v (null string)

HE SAID "HI"™ <ENTER> 'HE SAID "HI™?

HE SAID "HI, JACK" <ENTER> 'HE SAID "HI®

J.D. POWERS " <ENTER> | J.D. POWERS !
"HE SAID "9"HI""" <ENTER> "HE SAID "HI™"®

"HE SAID, ""HI, JACK.""*® 'HE SAID, "HI, JACK."?!

Numeric Input

The numeric field starts with the first non-space character, and
ends when a comma or carriage return is encountered. If the
comma is encountered first, the target variable is given a value
of zero, and input continues with the next target variable, if
any. If a carriage return is first, INPUT displays a new
question mark and waits for more data for the same target
variable.

Once a numeric field has been delimited, INPUT evaluates the
field. The following characters are valid in a numeric field:

All other characters are invalid.

If an invalid character is encountered, input stops. The target
variable receives the value of the field up to that point, and
an error (INPUT SYNTAX ERROR #5) is generated.

Even valid characters may terminate a field, if they are used
out of context. The following diagram shows the general form

Radie Sfhaek

PAGE 6 - 89

MODEL I/ILI COMPILER BASIC

TRS-80™

BASIC KEYWORDS

for a numeric field in which all the elements are valid (note
that spaces may separate any two elements without having any

effect on the evaluation):

'digit' is one of the characters from 0 through 9.
‘exponent’ is a whole number from ~64 to +63. The sign is
optional for positive values.

For example, the table below describes result of the statement

INPUT X$ under various conditions.

{<ENTER> represents a

carriage return; """ represents a leading or trailing blank
space and is used only where necessary for illustration or

emphasis.)

Data stream

s e ks s o D S 2200 i

TTTLI00TTT <ENTER>
12345,

s 1L 2 3 4 5 <ENTER>
-1.2345 E5 <ENTER>
+123450. E-5 <ENTER>
100H <ENTER>

1234/ <ENTER>

1..2 <ENTER>

.1 <ENTER>

Result in XS

P ——

100

12345

0

~123450
1.2345

100
1234

{Error #5)
(Exrror #5)

PAGE & -~ 90

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™
i@ REM ##% INPUT STATEMENT #%%
28 DIM MBGEL4
3@ INPUT PROMPT = °TYPE IN A MESBAGE: *3 MEG%

4@ INPUT PROMPT="TYPE IN THREE NUMBERS: "5 Nils N2Zs N3
S PRINT "DATA I8 BTOREDR LIRE THISB®

6@ PRINT "7t MBass 70

78 PRINT Nis NI N3

BB PRINT: GOTO 38

Radis fhaek

PAGE 6 - 91

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

-- STATEMENT --

INPUT from a disk file
Input Data From Disk File

This statement inputs data from a disk file. The data should
have been written by an analogous PRINT to disk file statement.
The number and type of target variables should match the number
and type of values in the PRINT item-list.

The input stream edit process is like that of INPUT from the

keyboard.

Examples

INPUT #1; A, B, C, D

Radie fhaek

PAGE 6 - 92

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

Inputs values for A, B, C and D from file-unit #1.
INPUT #2, KEY=NAMES; PAYRAT, EXEMPTS%

Inputs values for PAYRAT and EXEMPT% from the record indexed by
the contents of NAMES, from file-unit #2.

INPUT #3, KEY=RECORD%; PAYRAT, EXEMPTS%
Inputs values for PAYRAT and EXEMPT$% from the direct-access
record specified by RECORD%, from file-unit #3.

Sample Program

o o T S, T] -~ oo o

See the chapter on data files.

Radie Sfhaek

PAGE 6 - 93

MODEL I/IIT COMPILER BASIC BASIC KEYWORDS
TRS-80™

- STATEMENT --

INPUT USING
Input Formatted Data

INPUT USING inputs data from the keyboard according to a
specified format--how many fields, how many characters in each
field, and which characters to skip over.

You specify the format with an image line--either contained on a
separate program-line, or in a string variable referenced in the
INPUT USING statement. Image lines contain special characters
indicating the positions and lengths of fields within the data.

When executed, INPUT USING displays the prompt or a question
mark. When you press <ENTER>, INPUT USING edits the data until
it finds enough fields to satisfy the input ‘variable-list’'. If
the expected number of data fields are not found, INPUT USING
displays a new gquestion mark and waits for more data.

Special Keys During INPUT USING

<ENTER> Terminates the line at the current cursor
position and begins input-stream editing.

shift <~ Erases the line and starts over.

<SPACEBAR> Advances the cursor and types a blank space.

- Backspaces the cursor and erases character.

<BREAK> Halts the INPUT USING and gives control to the

<BREAK> handler.

Radio fhaek

PAGE 6 - 94

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

All other keys are accepted as data for the input line.

Image Lines for INPUT USING

If stored in a separate program line, image lines take this
form:

You can also store the image inside a string variable. Simply
assign the appropriate image character sequence to the string
variable.

Examples

100 IMAGES = "######4444 #4444 #H4448F #2444"7
110 INPUT USING IMAGES$, FIELD1S$, FIELDS, FIELD3, FIELD4%

Inputs values for the four variables listed, using the image
contained in IMAGES.

100 ;######4#
110 INPUT USING 100, RATE

Inputs a value for RATE, according to the image statement in

line 100.

Sample Programs

100 REM *%% TNPUT USING ***
110 DIM NAMES25, IMAGES2S8
120 REM ¢==-=25 character name---: nn

130 IMAGES = "###4#4 4444444444444 4044884 #4°

140 PRINT "TYPE IN A LINE LIKE THIS (name, age)"”
150 PRINT TAB(2); IMAGES

160 INPUT USING IMAGES, NAMES, AGE%

Radie fhaek

PAGE 6 - 95

MODEL I/IITI COMPILER BASIC BASIC KEYWORDS
TRS-80™

170 PRINT: PRINT "DATA WAS EVALUATED LIKE THIS:"
180 PRINT "NAME: '"; NAME§; "'"

190 PRINT "AGE: *'"; AGE%; "'"

200 PRINT: GOTO 140

The following program uses a separate image lines

100 PRINT "ENTER A NUMBER (UP TO 10 DIGITS)"
110 INPUT USING 120, A

120 ;#4ddedais

130 PRINT "THE DATA WAS EVALUATED LIKE THIS:"

140 PRINT USING 120, A
150 GOTO 100

When you run the program, always input 10-digit numbers
{including sign, decimal point, exponent field, etc.).
Otherwise, the data evaluation will probably differ from what
you intended. For further details, read "INPUT USING Edit

Process. "

i A S i T D S S S S, S W WS DS L i A i i

The ‘image' defines the fields which are passed to the standard .
input evaluation routines. The image serves as a "mask”, in
that only those characters aligned with "#" signs are used. For

example:
Image: HEREREEEEE HREERT
Data: "MR. JONES 1.334567"%
Resultant fields: "MR. JONES™" and "71.33"
(""" represents a blank space and is used only where necessary

for purposes of illustration or emphasis.)

String Input

All characters in the field are input to the target

variable--including leading and trailing spaces, commas and

guotes. There are no special delimiters.

For example, the table below describes result of the statement
INPUT USING AS$, S1S8, 82§

under various conditions ("7" represents a leading or trailing

blank space and is used only where necessary for illustration or
emphasis).

Radie Sfhaek

PAGE 6 - 96

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™
Result

AS$ (Image) Data s1s S28

$ REHHHHES ABCDEFGHIJK A CDEFGHIJ
#4 REHHEHS ABCDEFGHIJK AR DEFGHIJ
$HEY #4444 G-44 L-5 G-44 L-5~"~
HHEH HiH4# A,B,C,D,E A,B, +D,E,

FIRST SECOND F~~~~ g~~~

Numeric Input

If a comma is encountered in the input data, evaluation stops
and the current target variable receives the value of the field
up to that point. If there are additional target variables to
be filled, INPUT USING continues evaluation of the input line.
The evaluation continues at the first character following the
current image field.

All other characters are invalid. If an invalid character is
encountered, input stops. The target variable receives the
value of the field up to that point, and an error (INPUT SYNTAX
ERROR #5) is generated.

Even valid characters may terminate a field, if they are used
out of context. The following diagram shows the general form
for a numeric field in which all the elements are valid (note
that spaces may separate any two elements without having any
effect on the evaluation):

Radio fhaek

PAGE 6 - 97

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80"™

DIGIT

'*digit' is one of the characters from 0 through 9.
'exponent’' is a whole number from -64 to +63. The sign is
optional for positive values.

For example, the table below describes result of the statement
INPUT USING AS$, S1, S2%
under various conditions (""" represents a leading or trailing

blank space and is used only where necessary for illustration or
emphasis).

Result
A$ (Image) Data s1 S2%
FH#ds H4## 1234567890 12345 7890
FhHEHE HEH ~TT10 12 10 12
tHadHHtE & -1.234E5 1 ~123400 1
$HHHS H4HH 100, 2000 100 2000
HHEEE H4H# 100,2000 100 0*
$hH4HE. HEHE 12345.67890 12345. 6789
BHEH4# # 1 1 100000 1

* Zero because the '2' after ',' is forced into alignment with
the blank space in the image. Compare with the preceding line
in the table.

Radio fhaek

PAGE 6 - 98

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

- STATEMENT -—-

INPUT USING from a disk file
Input Formatted Data From Disk File

This statement inputs formatted data from a disk file in a
manner analogous to INPUT USING from the keyboard. The data
should have been written by an analogous PRINT to disk file
statement. The number and type of target variables should match
the number and type of values in the PRINT item-list.

For further details on image specifiers and input stream
editing, see INPUT USING from the Keyboard.

Radie fhaek

PAGE & ~ 99

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

Examples

INPUT USING #1; "####### ## H4###44 #####", A, B, C, D

Inputs values for A, B, C and D using the indicated image, from
file-unit #1.

INPUT USING #2, KEY=NAMES; FMTS$, PAYRAT, EXEMPT$%

Inputs values for PAYRAT and EXEMPT% from the record indexed by
the contents of NAMES, using the image in FMTS$, from file-unit
$#2.

100 ;####tde #+4
200 INPUT USING #3, KEY=RECORD%; 100, PAYRAT, EXEMPT%

Inputs values for PAYRAT and EXEMPT% from the direct-access
record specified by RECORD%, using the image in line 100, from
file-unit #3.

Sample Program

See the chapter on data files.

Radio fhaek

PAGE 6 - 100

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

== FUNCTION -—-

INPUTS
Input a Character String

INPUTS causes the program to stop execution until the operator
inputs a string with the 'length' specified. For example,
INPUTS${(3) causes the program to stop until the operator inputs 3
characters and presses <ENTER>, after which the program
immediately resumes execution.

The operator can input less than the 'length'® required by
pressing <ENTER> after completing the input.

Examples

s o - —

AS = INPUTS(5)

The program stops until the operator presses either 5 characters
(or less than 5 characters)} followed by <ENTER>. This string is
assigned to AS.

IF INPUTS$(3) = "YES"™ THEN 500
The program stops until the operator presses 3 characters (or
less than 3) followed by <ENTER>. After <ENTER> is pressed, the
Computer executes the rest of the IF/THEN statement.

LPRINT INPUTS$({20)
At this line, the program stops to allow the operator to input a

maximum of 20 characters. These characters are then printed on
the line printer.

Radie Sfhaek

PAGE 6 - 101

MODEL I/III COMPILER BASIC

BASIC KEYWORDS

Sample Program

a@ HEM
58 REM
188 REM
118 HEHM

#%% MAILING

128 PRINT "TYPE THE STATE —— MUET BE

130 A% = INPUT®{Z)
148 PRINT "TYPE THE ZIP
158 B$ = INPUTS$(3)
166 ADDREESSE: = A% & ¥ ¢

#RL

TYPE THE ZTATE ~— MUST BE
TX

TYPE THE ZIP CODE ~— MUST
76118

T 76118

STOP LINE 148

TRS-80™

##% SAMPLE PROGRAM DEMONSTRATING INPUTS #x%

LIST —— LAST TWO ENTRIEE #%%

TWO CHARACTERG®

CODE ~— MUST BE 5 CHARACTERS®

& B% : PRINT ADDRESS®

TWO CHARACTERS

BE 5 CHARACTERS

Radio fhaek

PAGE 6 - 102

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

= PUNCTION -~

INT
CONVERT TO INTEGER VALUE

INT returns the largest whole number that is not greater than the
‘number’. Unlike CVI, the number is NOT limited to the range
[-32768, 32767].

Examples

IR O Vo —

A = INT(X)
. Gets the integer value of X and stores it in A.
PRINT INT(2.5)
Prints 2.
PRINT INT(-2.5)
Prints ~3.

Sample Program
a@ REM 5% BAMPLE PROGRAM DEMONSTRATING INT »xx
9@ REM
18 PRINT "ENTER A& &-DIGIT PORITIVE NUMBER LIKE X¥X.XXXX*®
1@ INPUT X
128 IF X< THEN 128
138 A = INT((X®188) + B.5) /7 166
14 PRINT X3 "ROUNDED TO TWO DECIMAL PLACER IS": A
188 GOTO 166

*RU
ENTER A& &-DIGIT POBITIVE NUMBER LIKE XX, XXXX
7T 45,8976
. 4%, 8974 ROUNDED TO TWO DECIMAL PLACED IB 45.9

Radie fhaek

PAGE 6 - 103

MODEL I/III COMPILER BASIC BASIC KEYWORDS

~~ STATEMENT --

INTEGER
Define Variables as Integers

Ordinarily, BASIC classifies all variables as real unless a
definition statement or type declaration tag tells it to do
otherwise. INTEGER changes this default from real to integer.

If a 'letter list' is used, only variable names beginning with
the letters specified will be defaulted. Integer values must be
in the range of -32768 to 32767. They are stored internally in
two-byte, two's complement form.

INTEGER cannot be used after an executable statement.

Note: For more information, see the chapter on BASIC Concepts.

Examples

INTEGER A, I, N

After the above line, all variables beginning with A, I, or N
will be treated as integers. For example, Al, AA, and I3 will
be integer variables. However, Al$, AAS$, and I3% would still be
string variables, because the type-declaration characters always
override the INTEGER statement.

INTEGER I-N

Radie Shaek

PAGE 6 -~ 104

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

Causes any variable beginning with the letters I through N to be
treated as integer variable.

INTEGER

All variables in the program will be treated as integers unless
they have a type declaration tag, or there is a STRING or REAL
statement following this.

Sample Program

2@
2@
126
116
128
138

*RU

REM *%% SAMPLE PROGRAM DEMONSTRATING INTEGER #%x
REM
INTEGER W

Z = 1.9 2 W = 1.9
PRINT “THE VALUE OF REAL NUMBER Z I8 "5 Z
PRINT "BUT THE VALUE OF INTEGER W IS "3 W

THE VALUE OF REAL NUMBER 7 I8 1.9
BUT THE VALUE OF INTEGER W IS5 1
STOP LINE 138

Radie fhaek

PAGE 6 - 105

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

== STATEMENT --

KILL
Kill Disk File

When the KILL statement is executed, the ‘filespec' will be
deleted from the disk directory. It may no longer be accessed
and will be replaced by another file. KILL will not prompt you
before deleting the file, so you might want to write a prompt as

part of your program.

Examples

KILL "FILE/BAS:1"

When this statement is executed, the file FILE/BAS from the disk
in drive 1 will be deleted from the disk.

KILL AS

The filespec stored as AS is deleted from the disk.

Sample Program

5 REM ##% SAMPLE PROGRAM DEMONSTRATING KILL *#x

& REM

18 PRINT "INPUT THE FILE BPECIFICATION YOU WANT TO KILL®
15 PRINT *YoOU WILL NOT BE PROMPTED ~— ©

17 PRINT "THE FILE WILL IMMEDIATELY BE DELETED®

18 PRINT "WITH NO WAY TO RECOVER IT®
23 INPUT A%
33 WILL A%
480 GOTO 16
®
Radie fMaek

PAGE 6 - 106

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

~= FUNCTION --

LEN
Get Length of String

LEN returns the current number of characters in the 'string'.

Examples

P I —

PRINT LEN("MARY")

Prints 4.

PRINT LEN("MARY HAD A")

Prints 10.

i

X = LEN(SENTENCES)

Stores the number of characters in SENTENCES in X.

Sample Program

BB REM ##% SAMPLE PROGRAM DEMONSTRATING LEN #%%
98 REM
1@ PRINT "INPUT WORDS OR A SHORT SENTENCE®

118 INPUT AS$
128 PRINT "YOUR SENTENCE HAS": LEN{A%)s5 "CHARACTERG®

138 GOTO 188

#RUN

INPUT WORDE OR A SHORT BENTENCE

7?7 THIS I8 A BIRTHDAY SONG., IT ISN’T VERY LONG.
YOUR SENTENCE HAB 44 CHARACTERS

Radie fhaek

PAGE 6 - 107

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

~- STATEMENT --

LINE INPUT
Input Line of Data

When executed, LINE INPUT displaYs the prompt or a queStion
mark. When you press <ENTER>, LINE INPUT accepts the line into
the target variable.

Special Keys During INPUT

<ENTER> Ends the line at the current cursor position.
shift <- Erases the line and starts over.

<SPACEBAR> Advances the cursor and types a blank space.
<= Backspaces the cursor and erases character.
<BREAK> Halts the LINE INPUT and gives control to the

<BREAK> handler.

All other keys are accepted as data for the input line.

Examples

LINE INPUT TXTS
Inputs a line of characters into TXTS.

Sample Program

10 REM *%% LINE INPUT **%*
20 DIM TXT$255
30 PRINT "TYPE IN A LINE OF TEXT--ANY CHARACTERS AT ALL"

Radie fhaek

PAGE 6 -~ 108

MODEL I/IIY COMPILER BASIC BASIC KEYWORDS
TRS-80™

40 LINE INPUT TXTS$

50 PRINT "HERE'S HOW THE DATA IS SAVED"
60 PRINT "'"; TXT$; "'“

70 PRINT: GOTO 30

Input Stream Edit Process

B T T e —_——

Unlike INPUT, LINE INPUT does not ignore leading blanks. Every
character you type (except the special keys listed previously)
is accepted as data into the target variable. There are no
invalid characters, and there are no terminators except for
<ENTER> and <BREAK>.

For example, the table below describes the result of the
statement

LINE INPUT USING X$

under various conditions (<ENTER> represents a carriage return;
"% represents a leading or trailing blank space and is used
only where necessary for illustration or emphasis).

Data stream Result in X$

J.D. POWERS <ENTER> 'J.D. POWERS®

TTr3.D. POWERS™™T <ENTER> ! J.D. POWERS !

FIRST, SECOND, THIRD <ENTER> 'PIRST, SECOND, THIRD®

HE SAID "HI®™ <ENTER> *HE SAID ¥"HI®"?®

HE SATD, "HI, JACK"™ <ENTER> *HE SAID, "HI, JACK"?®

TWO DOUBLE-QUOTES ¢ 'TWO DOUBLE-QUOTES ¥¥!
9 REM ##% LINE INPUT =%

=28 DIM TXTEZ53

JA PRINT ®*TYPE IN A LINE OF TEXT--ANY CHARACTERES AT all*:
48 LLINE INPUT TXETS

2@ PRINT "HERE'S HOW THE DATA IS SAVED®

&l FPRINT """y TXThg #ve

78 PRINT: GOTO 28

#RLJ

TYPE IN A LINE OF TEXT--ANY CHARACTERE AT ALL

7 THIS I8 A& LINE OF TEXT CONTAINING SO0ME CHARACTERS. . 4&#.
HERE®S HOW THE DATA IS SAVED

TTHIE 16 A LINE OF TEXT CONTAINING S0ME CHARACTERS: . Z&#.°

PAGE 6 - 109

MODEL I/III COMPILER BASIC BASIC

TRS-80

KEYWORDS

—- STATEMENT --

LINE INPUT from a disk file
Input Line of Data from Disk File

This statement inputs a line of data from a disk file and stores
it in a string variable. For disk input, a line of data is
terminated by any of the following:

. A carriage return.

. Reception of 255 characters without a carriage return.
. End of file.

The input stream edit process is like that of LINE INPUT from
the kevboard.

Examples

LINE INPUT #1; AS

Radio fhaek

PAGE 6 - 110

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

Inputs a value for AS$ from file-unit #1.
LINE INPUT #2, KEY=NAMES$; COMMENTSS$

Inputs a value for COMMENTS from the record indexed by the
contents of NAMES, from file-unit #2.

LINE INPUT #3, KEY=RECORD%; COMMENTS

Inputs a value for COMMENTS from the direct-access record
specified by RECORD%, from file-unit #3.

Sample Program

o — . 2. o S~ o~ ;.

See the chapter on data files.

Radio fhaek

PAGE 6 - 111

MODEL I/III COMPILER BASIC BASIC EEYWORDS
TRS-80™

oo PUNCTION -~

LoG
Compute Natural Logarithm

LOG returns the natural logarithm of the 'number’. This is the
inverse of the EXP function, so X = LOG{EXP(X})}. To find the
logarithm of a number to another base B, use the formula LOG
B(X) = LOG E(X)/LOG E(B). For example, LOG(32767)/L0OG(2)
returns the logarithm to base 2 of 32767.

The result is always a real number.

Examples

B = LOG(A)
Computes the value of LOG(A} and stores it in B.
PRINT LOG(3.14159)
Prints the value 1.4473.
z = 10 * LOG(PZ2/P1)

Performs the indicated calculation and assigns it to Z.

Sample Program

i | e s T W o i A s

18 PRINT "INPUT A NUMBER®

2@ INPUT N

@ PRINT "THE NATURAL LOGARITHM OF™35 N3 "IS8"s LOGIND
48 GOTO 14

Radie fhaek

PAGE 6 - 112

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

== PUNCTION --

LOG10
Compute Base 10 Logarithm

LOGLO returns the base 10 logarithm of the 'number’. This is
the inverse of the EXP1l0 function, so X=LOGl0 (EXP10(X)).

Examples

PRINT LOG10 (100)

Prints 2.
X = LOGLO(Y)

Assigns the value LOGl0(Y) to X.
X = 10/LOG10 (X + 2A)

Performs the calculation and assigns the results to X.

Sample Program

. oo —— ;" - 2o TS " "

8@ REM *x% BAMPLE PROGRAM DEMONSTRATING LOGIR %«
2@ REM
1@ PRINT *"INPUT A NUMBER®
1i@ INPUT N
1280 PRINT N3 " = 18 Ta THE POWER OF"3: LOGIB(N?
138 GOTO 128
*RU
INPUT A NUMBER
7 36
84 = 10 TO THE POWER OF 1.74819

Radie fhaek

PAGE 6 - 113

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

~= STATEMENT -~-

LPRINT
Print on Line Printer

This statement outputs to the printer, beginning at the current
carriage position. It works just like PRINT, except for those
details specific to the video display.

Before using LPRINT, you must initialize the printer with the
TRSDCS FORMS command. This establishes the line-width,
page-length, and other parameters. See FORMS in the TRSDOS
Reference Manual.

Control Codes

B

The following control codes are intercepted and handled by
TRSDOS:

Code

Hex, Dec. Action Taken

9 09 Tabs to next eight column boundary.
oA 10 Ignored (not needed by Radic Shack

line printers).
ocC 12 Form feed.
\ ®
Radie fhaek

PAGE 6 - 114

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

All other codes are sent unchanged to the printer.

Sample Program

210

@
190
118
120
1.3@
140
150

REM #%% SAMPLE PROGRAM DEMONSTRATING LPRINT %#%

REM

REM #%% CHECK THAT LINE PRINTER IS CONNECTED AND ON-LINE #%%
REM

PRINT "INPUT WHAT YOU WANT PRINTED ON THE LINE PRINTER®
INPUT A%
LPRINT A%
GOTO 128

THIS IS WHAT I WANT THE LINE PRINTER TO PRINT!!!

#RU
INPUT

WHAT YOU WANT FPRINTED ON THE LINE PRINTER

? THIS IS WHAT I WANT THE LINE PRINTER TO PRINT!!!

Radie fhaek

PAGE 6 - 115

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

~- STATEMENT --

LPRINT USING
Print Using Format on Line Printer

L?RIN? SSING 1mage, Lﬁ@m*ilst -
‘1mage specifies the format of the data-
be a line number referrzﬁg to an xma; =
_statement, or a string expressxon cont&l‘
_the 1image sgec1f‘ers,;éi ~
prlnt*funct'en‘ is an‘aytxanai use of TAB.~,&,‘;~_k .
_1f omitted, prlntxng starts at the cufre ; _“:~;‘~-~
carriage position. - -
’1tem~ilst‘ contains exgress&ans,te be evaluateéu,,‘
_ _and output to the brinter. TAB may be anywhere 1n
‘the 1tem lzst* ; very item but the East . ;

- However, a csmma or s
~ item will suppress the automat: ‘
~, after the last characferfls prlﬂted._f =
__carriage w111 remain in the next pos;txaﬁf-ff ‘
‘f?fallowzng the last character prlnteé.~a .

This statement outputs to the printer, beginning at the current
carriage location. Unlike LPRINT, it outputs formatted data,
according to an image specification contained on a separate
program line or in a string variable.

LPRINT USING is just like PRINT USING, except for the special
features related to the video display.

Before using LPRINT, you must initialize the printer with the
TRSDOS FORMS command. This establishes the line-width,
page-length, and other parameters. See FORMS in the TRSDOS

Reference Manual.

Control Codes

The following control codes are intercepted and handled by
TRSDOS ¢

Radie Sfhaek

PAGE 6 - 116

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™
Code
Hex. Dec Action Taken
9 0% Tabs to next eight-column boundary.
0a 10 Ignored {not needed by Radio Shack
line printers).
gc 12 Form feed.

A1l other codes are sent unchanged to the printer.

Sample Program

b o TR e it s s i A W s

Be REM *4% SAMPLE PROGRAM DEMONSTRATING LPRINT USING »x%
@ REM

188 TOYTAL = B

118§ FEEEE. 3

128 5 LHBEHEHEEE

138 FOR I = 1 TG 25

14@ N o= RND{@) = 99

158 LPRINT UBING 118s N

168 TOTAL = TOTAL + N

178 NEXT I

188 LPRINT UBING 1238 Ve ¥
198 LEPRINT UBING 118: TOTal

Radie Sfhaek

PAGE 6 - 117

MODEL I/III COMPILER BASIC BASTIC KEYWORDS

TRS-80™

-- STATEMENT --

ON BREAK GOTO
Enable a <BREAK> Handling Routine

Normally, when you hit the <BREAK> key while executing a
program, BASIC stops your program and puts you in the command
mode. You then must start your program at the beginning again.

You might want BASIC to handle the <BREAK> key in a different
way. ON BREAK GOTO tells BASIC to go to the line number you
specify whenever the <BREAK> key is pressed.

Note: Also see RESET BREAK

Example

————y o

ON BREAK GOTO 500

Whenever a <BREAK> key is pressed, control will go to line
number 500.

Sample Program

18 REM #%% ON BREAK GOTO AND RESET BREAK STATEMENTS %%
20 PRINT CHR$(28)35 CHR®(31)

3a ON BREAK GOTO 160

4@ PRINT "1I°M TRAPPING THE <BREAK> KEY NOW®

3@ FRINT "PRESS <BREAK» WHILE I COUNT TO 1200"

6HB FOR I = 1 TO 1000

78 PRINT CRT(B:15)3 1

80 NEXT I

8 RESET BREAK

180 PRINT "NOW BREAK I8 REBET®

11@ PRINT "TRY PRESSING <BPREAK> WHILE I COUNT TO 1008

Radio fhaek

PAGE 6 - 118

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

120 FOR I = 1 TO 10006
130 PRINT CRT(8:15)3 1
148 NEXT I

158 5TOP
168 PRINT CHR%{(=2B)s CHR$(31): "YOU PRESSED <BREAK:"
170 GOTO 9@

I'M TRAPPING THE <BREAKX»> KEY NOW
PRESS «<BREAR> WHILE I COUNT TO 1000

352

YOU PRESSED <BREAKX:
NOW BREAK IS5 RESET
TRY PRESSING <BREAK:> WHILE I COUNT TO 1000

1000
STOP LINE 150

Radie fhaek

PAGE 6 - 119

MODEL I/III COMPILER BASIC BASIC KEYWORDS

s

L2

TRS-80"

~=~ STATEMENT --

ON ERROR GOTO
Set Up Error-trapping Routine

ON ERROR GO TO or ON ERROR GOTO (the space is optional) allows
you to set up an error-trapping routine to get the Computer to
handle the error the way you want it handled. Normally, you

have a particular error in mind when you use the ON ERROR GOTO

statement.

This statement is often used to prevent error messages from
confusing an operator who is a non-programmer. For example, if
the operator inputs the wrong data type in any of your input
statements, the Computer will break program execution and print
an Input Syntax error message. To prevent this from happening
you can set up an error trapping routine like the one
demonstrated in the sample program.

The ON ERROR GOTO statement must be executed before the error
occurs or it will have no effect. Once it has "trapped” an
errvar, ON ERRCOR GOTO is disabled. You must use another ON ERROR
GOTO statement to trap the next error.

A good way to use ON ERROR GOTO is to place it before any

statement which might cause an error. If no error occurs, the
next ON ERROR GOTO statement will supersede it.

Note: Also see ERR, ERROR, and RESET ERRCR

Example

e o e o e W

ON ERROR GOTO 1500

If an error occurs in your program anywhere after this line,
control will branch to line 1500.

Radie fhaek

PAGE 6 - 120

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™
Sample Program
8@ REM ##% SAMPLE PROGRAM DEMONSTRATING ON ERROR GOTO ##%
D@ REM
182 ON ERROR GOTO 148
118 PRINT "INPUT & WORD®
128 INPUT A
138 sTOP
14B IF ERR <> 35 THEN ERRCR ERR
158 PRINT "GORRY: YOU HAVE TO INPUT A NUMBER®
168 REM
1780 REM ##% NEXT STATEMENT RE-ENABLEE ON ERROR GOTO ¥%x
186 REM
19@ ON ERROR GOTO 148
2B GOTO 128
#RU
INPUT A WORD
7 GOOBER
SCORRYs YOU HAVE TO INPUT & NUMBER
7 &7
STOP LINE 138

E56ie

PAGE 6 - 121

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

== STATEMENT --

ON...GOSUB
Test and Branch to Subroutine

ON...GO SUB or ON...GOSUB (the space is optional) is a multi-way
branching statement like ON GOTO, except that control passes to
a subroutine rather than just being shifted to another part of
the program. For further information, see ON GOTO

Example

e W o et i i >

ON Y GOSUB 1000, 2000, 3000

This statement will first evaluate Y. If Y =1, the subroutige
beginning at line 1000 will be called., If ¥ = 2, the gubroutlne
at 2000 will be called. If ¥ = 3, the subroutine at line 3000

will be called.

Sample Program

. —— g - T - " " - -

88 REM *##% SAMPLE PROGRAM DEMONSTRATING ON ... GOSUR *#%%
5@ REM
1@ PRINT "CHOOBE 1s &+ OR 3
11@ INPUT I
128 ON 1 GOBUE 588, 688. 788
132 STOP
508 PRINT "SUBROUTINE #1* @ RETURN
&HPB PRINT "SUBROUTINE #Z" @ RETURN
708 PRINT "SUBROUTINE #3% @ RETURN
*#RU
CHOOGE 1s &s OR 3
7 3
SUBROUTINE #3
STOP LINE 138
B
Radie fhaek

PAGE 6 - 122

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

-~ STATEMENT —-

ON...GOTOC
Test and Branch to Different Program Line

ON...GO TO or ON...GOTO (the space is optional) is a multi-way
branching statement that is controlled by test value.

When the Computer executes ON GOTO, it first evaluates
‘test-value' and, if it is a real number, converts it to an
integer. We'll refer to this integer as J. The Computer then
transfers control to the Jth line number in the ON GOTO
statement. For example, if J = 1, the Computer transfers
control to the first line number following GOTO; if J = 5, the
program control drops to the fifth line number.

If "test value' is smaller than one or greater than the number
of line numbers in the list, the computer will proceed to the
next program line.

Examples

s e o o s oo e oz

ON A GOTO 100, 200, 300

If the integer of A equals 1, program control drops to 100.
If it equals 2, program control drops to 200.
If it eguals 3, program control drops to 300.

ON X GOTO 500, 520, 540, 550, 560

If integer A equals 1, program control drops to line 500.
If it equals 2, program control drops to line 520.
If it equals 3, program control drops to line 540.
If it equals 4, program control drops to line 550.
If it equals 5, program control drops to line 560.

Radie Shaek

PAGE 6 - 123

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80"

Sample Program

o G G G - -

8@ REM *#%% SAMPLE PROGRAM DEMONSTRATING ON...GOTO *x#
2@ REM
1@ PRINT *DO YOU WANT TO ——w ¢
112 PRINT ® (1) INPUT FILESL"
120 PRINT " (2) REVISE FILEB"
138 PRINT * {(3) LIST FILEG®
149 PRINT "INPUT 1+ 2+ OR 3¢
15@ INPUT A
168 ON A GOTO 580+ &B2y 700
178 GOTO 106
500 PRINT "INPUT FILES PROGRAM* @@ STOP
&R PRINT *REVISE FILES PROGRAM" @ 8TOP
728 PRINT "LIST FILES PROGRAM®" : STOP
RUN
DO YOU WANT TO ~——
{1) INPUT FILES
{2y REVIBE FILES
{3) LIST FILES
INPUT 1s 25 OR 3
73
LIBT FILES PROGRAM
STORP LINE 708

Radio fhaek

PAGE 6 ~ 124

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80%

-=— STATEMENT --

OPEN
Open Disk File

- f{* TYPE=I'), gné mu
f;le tyges -

‘ Note: MODE, TYPE, LENGTH, and KEY may appear in any

Radie fhaek

PAGE 6 - 125

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

order.

This statement sets up the required buffers and control blocks
for disk file I/0. The file specified by 'file' is given a
file~unit number. While the file is open, this number is used
to reference the file.

A file cannot be opened under two file-units at once.

The parameters in the OPEN statement determine the file type,
access mode, record length, and other specific features. See
"Data Files" for a discussion of file access under RSBASIC.

Examples

B e

OPEN #1, "DATA/D", MODE=R, TYPE=D, LENGTH=32

Opens the file "DATA/D" for direct access, read-only, with a
record length of 32. File-unit #1 will be used. If the file
was created with a different record length, an error will occur.

OPEN #2, "MAILLIST/ISM", MODE=U, TYPE=I, LENGTH=128, KEY=25

Opens the file "MAILLIST/ISM" for updating. The file must
already exist on one of the diskettes in the system or an error
will occur. The file must be indexed-sequential, with a record
length of 128 and a key length of 25. File-unit #2 will be
used.

OPEN #{ BASE% + CURNT%), FILES$, MODE=E, TYPE=S
Opens the file specified by the contents of FILE$ for sequential

writing beginning at the end of the file. The file-unit
specified by the expression (BASE% + CURNT%) will be used.

Sample Program

e e

See the chapter on data files.

Radie fhaek

PAGE 6 ~ 126

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

-- FUNCTION --

OR
Calculate Logical OR

OR is a logical operation performed on the binary
representations of the two 'numbers'. OR searches the bits of
each number to see if either or both are set to 1. A binary 1
is returned if either or both bits are 1; a 0 is returned only
if neither bit contains a 1.

First Second Bit
Number Number Returned
1 1 1
1 0 1
0 1 1
0 0 0

If 'number' is a real number, OR will convert it to an integer.
The binary number returned is always expressed
as an integer.

Note: Also see AND and XOR.

Examples

PRINT OR(192,3)

Prints 195. The operation is performed as follows:

Binary
Integer Representation
192 11000000
3 00000011
195 11000011

Radie fhaek

PAGE 6 - 127

MODEL I/III COMPILER BASIC

PRINT OR(195, 3)

Prints 195:

BAZIC KEYWORDS

=
&

Binary
Integer Representation
185 11000011
3 00000011
195 11000011
Sample Program
18 REM 5% DAMPLE PROGRAM DEMONITRATING OR =%
28 REM
3@ Cgs e 1

48 PRINT "TYPE A BENTENCE WITH UPPER AND LOWER CaABE LETTERB®

5% INFUT AS

&8 FOR X = 1 TGO LEMN{AS)
7@ BE = SEGHE(A%: X120

8o D o= ABC(E%)

S Cf = CF & CHRS(OR(3Z:D¥)

128 NEXT X

118 PRINT "HERE IT IS IN ALL LOWER CABE @ "5 (%

128 GOTO 38

#RU

TYFE A& SENTERNCE WITH UPPER AND LOWER CaDE LETTERS
7 Thiz iz a Hentencs using UPPER and lower Caze Letters,

HERE IT I8 IN ALL LOWER CABE ¢ fthiz iz & zentence uzing upper an
d lower caze letters.

Radie Sfhaek

PAGE 6 - 128

MODEL I/II1 COMPILER BASIC BASIC KEYWORDS
TRS-80™

== FUNCTION --

POS
Search for Specified String

Examples

s ot - ——- -

In these examples, A$ = "LINCOLN".
POS(AS$, "INC")
Returns 2.
POS(AS$, "COLN")
Returns 4.
POS(AS, "1l2")
Returns 0.
POS{AS$, "LINCOLNABRAHAM")

Returns 0.

Sample Program

o s

8@ REM *¥%¥% CAMPLE PROGRAM DEMONSTRATING POS ##%

2@ REM

188 REM *¥% GEARCH MAILING LIST FOR NO. OF 7&i#% ZIP CODES #x#
110 REM

128 COUNTER = @

130 READ ADDREGHE$

140 IF ADDREGSS = "@* THEN 180

138 IF POS(ADDRESS$s "761") = @ THEN 138

Radie fhaek

PAGE 6 - 129

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

168 COUNTER = COUNTER + 1

178 GOTO 136

186 PRINT "NUMBER OF TARRANT COUNTY.: TX ADDRESEEER IS": COUNTER @ BTOP
196 DATA Y1068 TWO TANDY CENTER: FORT WORTH: TX 7&188°0

200 DATA "16462F SOUTH CENTRAL EXPRESSHAYs RICHARDEON.: TX 75888¢

218 DaTA "BOX 380328 TCUs FORT WORTH. TX 76129°

228 DATA "18 BYLVAN DRIVEs WESTFIELDs MA B10B5"

230 DATA "3931 GORHAM DRIVE: BURLEBON. TX 76148"

248 DATA "@"

R
NUMBER OF TARRANT COUNTY.s TX ADDRESSES I8 3

S5TOP LINE 1880

Radio fhaek

PAGE 6 - 130

MODEL I/III COMPILER BASIC BASIC XKEYWORDS

TRS-80™
~= STATEMENT -~

PRINT
Print on Video Display

This statement outputs to the display, beginning at the current
curscr position. It outputs string data character-for-character,
with no alteration, and modifies numeric data according to a
default format described later on.

The punctuation between items (semi-colons or commas) determines
the spacing between the text as it is displayed. A semi-~colon
produces no extra space, while a comma advances the cursor to
the next print zone. The print zones are:

| ZONE 1

Izaxg 2| |ZONE 3| |ZONE 4| |ZONE 5
COLUMNS [0 15

16 31] 132 47| |48 63| |64 79|

Examples

PR ——

PRINT A / 3
Displays the result of A/B.

PRINT “"THE SUM IS8%; A + B

Radie .

PAGE 6 - 131

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

Displays the message in quotes followed by the result of A+B.
PRINT “NAME®", "AGE", "PHONE"

Displays the three headings in three successive print zones.

Cursor Motion and Print Positions

s P U v A A AP S g S —

Whenever a character is printed in column 63, the cursor wraps
around to column 0 on the next row. Whenever a character is
printed in column 63 on the bottom row (15) of the display, the
display scrolls up, and the cursor returns to column 0 of row
15. Scrolling also occurs when a carriage return or line-feed is
printed while the cursor is anywhere on the bottom row.

{(Scrolling: The text in row 1 is moved to row 0, the text in row
2 is moved to row 1, ... the text in row 15 is moved to row 1l4.
The row 15 is then filled with blanks.}

The current cursor position determines where a particular item
will be printed. 1In general, the current cursor position
immediately follows the last character printed. However, there
are several ways to move the cursor before printing an item.

Semi-Colons and Commas

When semi-colons are used as separators in the item 1list, each
item is printed immediately after the last item printed. When
commas are used as separators, the cursor advances to the next
print zone after printing each item.

For example:

10 DATA "FIRST", 100.100, "SECOND", 1234.567, "END", 0
20 PRINT “DEMO OF PRINT WITH SEMI-COLONS IN ITEM-LIST"
30 READ TXTS$, NMBR

40 PRINT TXTS; NMBR:

50 IF TXTS$ <> Y"END" THEN 30

60 RESTORE

70 PRINT: PRINT “DEMO OF PRINT WITH COMMAS IN ITEM~LIST"
80 READ TXTS$, NMBR

90 PRINT TXTS, NMBR,
100 IF TXTS <> "END"™ THEN 80

Commas provide a convenient way of outputting tables to the
display. The tables can contain up to five columns:

Radie fhaek

PAGE 6 - 132

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80 ™

}‘O PRINT !?',};SB’ "N**Z ﬂ' "t’}**3“, “N**4", lIN**5l§
20 FOR N = 1 TO 5 STEP .5

30 PRINT N, N**2, N**3, N**4, N**5

40 NEXT N

CRT and CRTR

There are two special print functions for positioning the
cursor. CRT moves it to an absolute row-column locaticon; CRTR
moves it to a relative row-column location, specified as an

of fset from the current row—column location. For syntax
details, see CRT and CRTR.

Output Format for Numbers

o o s U AW W OO R L WS O WS s D YR Y SN AT T Y5> WA WD

. The value is rounded to a maximum of six significant
digits (leading and trailing zeros are suppressed).
. After rounding, if the value is smaller than -999%89 or
greater than +999999, it is displaved in E-format, e.g.,
1.1 E6 for the value 1100000
. After rounding, if the value is greater than -0.0000001
and less than +0.0000001, it is displayed in E-format,
e.g.,
1.1 E-7 for the value 0.00000011
. Numbers between -1 and +1 which are not displayed in
E~format are always displaved with a zero ahead of the
decimal point, e.qg.,
0.05 for the value .05
. A single trailing space is always added to
the number. A leading space is added if the number is
positive and greater than zero.

Note: The PRINT USING statement lets you override these rules.

String Output

s S s— o~ —— " " " —

PRINT ocutputs in the scroll-mode. That means you can output any
of the scroll-mode characters, including control characters.

For a complete list of characters available, see the TRSDOS
Reference Manual.

To send a character or string of characters, store the
character(s) in a string variable and PRINT the variable. Or
you can use the CHRS and STRINGS functicns. For example:

Radie fhaek

PAGE 6 - 133

MODEL I/III COMPILER BASIC BASIC EKEYWORDS

TRS-80™

AS = FhEEkkEW
PRINT AS

produces the same output as
PRINT STRINGS (5, "*¥)

CLSS = CHRS(28)
PRINT CLSS

Stores control code 28 in CLS$. PRINTing CLS$ homes the cursor
to the upper left corner.

Graphics Characters

Since PRINT outputs in the scroll-mode, graphics characters
cannot be output using a normal print list. Instead, there is a
special function to provide graphics-mode output. See CRTG.
(For a list of graphics characters, see the TRSDOS Reference
Manual.)

Other PRINT~related functions

W s o o S A o S AL O D, KD S i M S O SO R W L S A T . .

TAB, CRTX, CRTY, CRTI.

Radie fhaek

PAGE & - 134

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

-—= STATEMENT --

PRINT to a disk file
Print to Disk

This statement performs disk output in a manner analogous to the
PRINT to video display. Of course, none of the special video
display functions may be used. One PRINT statement writes one
record.

A comma f," is inserted after each but the last item in the
disk record.

For output formats, see PRINT to Video Display.

See "Data Files”™ for a discussion of file access under RSBASIC.

Examples

Radie fhaek

PAGE 6 - 135

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

PRINT #1; A+B
The value of A+B is output to file-unit #1.
PRINT #2, KEY=NAMES$; NAMES, PAYRAT, EXEMPT%

NAMES$, PAYRAT, and EXEMPT are output tco the record indexed by
the the contents of NAMES$, in file-unit #$2.

PRINT #3, KEY=RECNBR%; NAMES, PAYRAT, EXEMPT%
The same three items are output to record number RECNBR%, in

file—unit #3.

Sample Program

L

See the chapter on data files.

Badie fhaek

PAGE 6 - 136

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

~=~ STATEMENT -~

PRINT USING
Print Using Format

This statement outputs to the display, beginning at the current
cursor location. Unlike PRINT, it outputs formatted data,
according to an image specification contained on a separate
program line or in a string expression.

When executed, PRINT USING attempts to output the first data
item according to the first field in 'image', the second
according to the second field, etc. 1If there are not enough
image fields to satisfy the item-list, PRINT USING starts over
at the beginning of 'image'.

Image Lines for PRINT USING

S W W KD —— " -~ o st Sy S TR e S A D >

The image line indicates exactly how the data is to be printed:
number of fields, length of each field, literal characters to
insert between fields, and format for string or numeric fields.
The following special characters are available for specifying
the output format for string and numeric fields:

Radie Shaek

PAGE 6 - 137

MODEL I/IIT COMPILER BASIC BASIC EKEYWORDS

Special
Character Meaning

MODEL I/II1 COMPILER BASIC BASIC KEYWORDS
TRS-80™

Any other characters-—-or any of the above characters used out of
context--will be treated as literals and inserted into the
display output. Such characters also serve as ilmage-field
delimiters {they mark the beginning and end of the fields).

If stored in a separate program line, image lines take this
form:

You can also store the image line inside a string, and then
reference that variable in PRINT USING in place of the
line-number.

Examples:

s o T - -

100 IMAGES = "MR. #######44## IS % AND MAKES SH####. 44"
110 PRINT USING IMAGES, NAME$, AGES, SAL

Prints the values of the variables NAMES$, AGE%, SAL using the
image line stored in IMAGES.

100 ;MR. #####444## IS #4 AND MAKES SH#####.##
110 PRINT USING 100, NAMES, AGE%, SAL

Produces the same output as the previous example.

110 PRINT USING 100, CRT{(X%,Y%), NAMES, AGE%, SAL
Printing starts at row X%, column Y%.

110 PRINT USING 100, NAMES, AGE%, SAL,
The trailing comma suppresses the usual carriage return after

the last character is displayed.

How Data is Formatted into the Image

A G i) S i vt e o W i O L s s S s T s S TR D P VY T P Ny R < YT T R) S e

Radie 1

PAGE 6 — 139

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

String Data

String data is left-justified into the image field, with filler
blanks added on the right if necessary. If the string is too
long to fit, the string is truncated on the right.

{When '>' is used as the first character in the field, the
string is right-justified with filler blanks added on the left
if necessary. If the string is too long to fit, truncation is
on the left.)

Numeric Data

If the field contains a decimal point, the number is rounded to
the precision specified in the image-field. The, rounded numbers
is always right justified, with filler blanks added on the left
if necessary. If the number contains too many numeric
characters to the left of the decimal point, a string of
asterisks will be output to f£ill the field (no digits will be
displayed.

Notes: Unless *+' or '-' is used ahead of the field,
negative numbers will require one of the "#' positions
for the sign. If '+' or '"-' is used, the sign will not

take one of the '#' positions.

If '*' is used, any unused leading positions will be
filled with asterisks instead of with the usual blanks.

Sample Program

B i —————

10 REM %% PRINT USING ***

20 DIM IMAGES80, STRINGS25

30 PRINT "ENTER THE OUTPUT IMAGE FOR 3 FIELDS: string,
real, integer™®

40 LINE INPUT IMAGES

50 PRINT "NOW ENTER THE DATA: string, real, integer”

60 INPUT STRINGS, RLN, NTGR%

70 PRINT "HERE'S THE FORMATTED QUTPUTY

80 PRINT USING IMAGES, STRINGS, RLN, NTGR%

90 PRINT: GOTO 30

Radio Shaek

PAGE 6 - 140

MODEL I/III COMPILER BASIC BASIC KEYWORDS

A

TRS-80™

Sample Run

¥HLU

ENTER THE OUTPUT IMAGE FOR THREE FIELDS: strin®: reals
T OBEHEHNNHE. HUREE, HHSEEH

NOW ENTER THE DATA: zitrings real-numbers inteder

7 LOTBALUCKs 345462 1283

HERE?S THE FORMATTED OQUTPUT:

LOTSALUCK 343462, 1283

integer

Radie fhaek

PAGE 6 - 141

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

== STATEMENT --

s

PRINT USBING to a disk file
Print Using Format to Disk File

This statement performs disk output in a manner analogous to
PRINT USING to video display. Of course, none of the special
video display functions may be used.

PRINT USING outputs formatted data, according to an image
specification contained on a separate line or in a string
expression. When executed, it outputs the first data item
according to the first field in 'image', the second, according

Radio Shaek

PAGE 6 - 142

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

to the second field, etc. 1If there are not enough image fields
tc satisfy the item=-list, PRINT USING starts over at the
beginning of ‘image’.

For further details on image specifiers, see PRINT USING to
Video Display. See "Data Files" for a discussion of file access
under RSBASIC.

Examples

it b e e o . —

PRINT USING #1; "###,##4.44", A+B

The value of A+B is output using the specified format to
file-unit #1.

PRINT USING #2, KEY=NAMES$; FMT$, NAMES; PAYRAT; EXEMPTS%

NAMES$, PAYRAT, and EXEMPT are output using the image in FMT$, to
the record specified by the the contents of NAMES, to file-unit
#2.

100 ;<#H###Htttdtddastttd St 44 #4
110 PRINT USING #3, KEY=RECNBR%; 100, NAMES$; PAYRAT; EXEMPTS

The same three items are output using the image of line 100, to
record number RECNBR%, to file-unit #3.

Sample Program

—— s D T S oW W WK W - 000 S -

See the chapter on data files.

Radie fhaek

PAGE 6 - 143

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

-= STATEMENT -~

RANDCMIZE
Reseed Random Number Generator

RANDOMIZE reseeds the random number generator to a random place
on the generator. If your program uses the RND function, the
same sequence of pseudorandom numbers will be generated every
time you Run the program. Therefore, you may want to put
RANDOMIZE at the beginning of the program. This will help
ensure that you get a different seguence of pseudorandom numbers
each time you run the program.

RANDOMIZE needs to be executed only once in the program.

Example

o o s i e v

RANDCOMIZE

This statement helps ensure you will get a different seguence of
random numbers every time you RUN the program.

Sample Program

B L T e ——————

88 REM *##% SAMPLE PROGRAM DEMONSTRATING RANDOMIZE %#%%
98 REM

190 RANDOMIZE

110 PRINT CHR&(28)s5 CHR${(31)

122 PRINT "PICK A NUMBER BETWEEN 1 AND 5*

130 INPUT A

143 BY = RND % 5 + |

15 IF A = B THEN 186

Radie fhaek

PAGE 6 —- 144

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80"™

168 PRINT "YOU LOBEs THE ANSWER IS "3 Bs ¥ -—— TRY AGAIN.Y

1780 GOTO 128
188 PRINT *YOU PICKED THE RIGHT NUMBER -—- YOU WIN'Y @ GOTO 128

PICK & NUMBER BETWEEN 1 AND 5

74

You LOBEs THE ANBKER I8 3 -— TRY AGAIN.
PICK A NUMBER BETWEEN 1 AND B

71

YOU LOBE: THE ANSWER I8 3 —— TRY AGAIN.
FICK A NUMBER RBETWEEN 1 AND 5

7?3

YOU PICKED THE RIGHT NUMBER —-— YOU WIN!

Radie fhaek

PAGE 6 - 145

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

e STATEMENT --

READ
Get Value from DATA Statement

READ assigns a value from a DATA statement to the ‘variable’.
The first time READ is executed, READ assigns the first value in
the first DATA statement to its first ‘variable’. The second
time, READ reads the second value in the first DATA statement
and assigns it to its second variable. READ continues to assign
data to its variables in seguential order moving to the second
DATA statement when all the data in the first DATA statement has
been read.

o

An Out of Data error occurs if there are more attempts to READ
than there are DATA items.

Note: Alsc see DATA.

Examples

s e e . o "

HEAD 7
Reads a numeric value from a DATA statement.
READ 88, T, U

Reads values for S8S$, T, and U from a DATA statement

Sample Program

P Ty ————

BB REM €% SAMPLE FROGRAM DEMONGTRATING READ #¥#
2?3 REM
1@ REM ##% READ IN DISCOUNT QUALIFICATIONS ##+%

118 READ Ql%s 2%
2@ DATA "PRE-PAYMENT DISCOUNT"s "GQUANTITY DISCOUNT™
136 REM *¥#¥% READ IN DISCOUNTS ##%

Radio fhaek

PAGE 6 -~ 146

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

148 READ DI DE
158 DATA .B5. @7

168 REM

178 PRINT @Qi%: * ——— "3 Di#i1083; "4%°

188 PRINT Q%3 * ——— %35 DEx188: "%
*RUN
PRE-PAYMENT DRISCOUNT ~-—- 5 %
GUANTITY DISCOUNT ——— 7 %

HTOP LINE 188

Radie fhaek

PAGE 6 - 147

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

-~ STATEMENT --

READ from a disk file
Read Contents of Disk File

Sequentlal access flles':;;~
READ # fziewunlt* varxable«list

; In&exeé«sequential access flles‘; - .
REAB % flie“ﬁﬁlt, KEYmkey, varlablewlzst

“;Direct access f1133*~f““-‘~ ‘~ -
READ # f11e~unlt KBYmrecaré“nﬁmber, variabl

There shouid be no punatuat!c
If no varxablesf ;

comma“
tbe last varlable;

'KEY*recar&~numbefff is useé fcr anut from dxract
___access files. reeord-number* is a numeric
exgress;on specifying the record number.;‘

This statement performs disk input of binary records written
with the WRITE statement. ‘'variable-list' must match the
‘item-list'® used when the record was written, in number and type
of data items. String variables must be large enough to contain
string data; integer data must be read into integer variables;
etc.

See "Data Files® for a discussion of file access under RSBASIC.

Examples

i s o s i e o

Badia fhaek

PAGE 6 - 148

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

READ 4#1; A: B
Values for A and B are read from file-unit #1.
READ #2, REY=NAMES: PAYRAT, EXEMPTS

PAYRAT and EXEMPT are read from the record indexed by the
contents of NAMES, in file-unit $#2.

READ #3, KEY=RECNBR%; PAYRAT, EXEMPT%

The same two items are read from record number RECNBR%, in
file-unit #3.

Sample Program

D o ;oo D R - St e s

See the chapter on data files.

Radie fhaek

PAGE 6 - 149

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

==~ STATEMENT -«

REAL
Define Variables as Real Numbers

REAL defines all variables, or all beginning with the letters
specified in 'letter-list' as real. However, a type
declaration character will override the REAL statement. Real
numbers are stored in 8-bytes and have 14 digits of precision,
although only 6 are printed.

REAL with a letter list may be used after an INTEGER or STRING
statement to override the integer or string defaults for certain
specified variable names. PFor example:

10 INTEGER
20 REAL A-C

causes all variables, except those beginning with the letters A
through C, to be integers. Variables beginning with A, B, and C
are real.

Note: For more information, see the chapter on BASIC Concepts.

Examples

i 2o v e Vo o

REAL I, W-Z

Causes any variables beginning with the letters I or W through 2
to be real variables. However, I% would still be an integer
variable because of its type declaration tag.

Radio fhaek

PAGE 6 - 150

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™
Sample Program
18 INTEGER
20 REAL X
S@0A o= 1,23
4@ X = 1,33
58 PRINT "A EqUALE": A
HB PRINT "X EQUALS"s X
*RUN
A Eauals 1
X EGUALS 1.23
STOP LINE &8
®
Radie fhaek

PAGE 6 - 151

MODEL I/I1II COMPILER BASIC BASIC XKEYWORDS
TRS-80™

~= STATEMENT -~

REM
Comment Line {(Remarks)

REM instructs the Computer to ignore the rest of the program
line. This allows you to insert remarks into your program for
documentation. Then, when you or scmeone else looks at a
listing of your program, it will be easier to figure out.

The apostrophe (') may be substituted for REM.
Examples

REM This is a remark

REM

REM I FEEEE X E S S S AR SRS LS EE L 54
7

This is a remark

A1l of these lines will be ignored when the program is executed.

K=l : REM Initialize X
K=%+1 3 REM Increment X

Both statements on the right side of the colon will be ignored
when the program is executed.

Sample Program

B L T T T ————

18 REM THIB IS A REMARK
=@ PRINT "SAMPLE PROGRAM®
33 REM IT WILL DO NOTHING TO THE PROGRAM

Radie fhaek

PAGE 6 - 152

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

-~ STATEMENT =--

RESET BREAK
Disable the <BREAK> Handling Routine

RESET BREAK disables the <BREAK> handling routine you set up
with ON BREAK GOTO.

For example, you might use ON BREAK GOTO so that a person's
pressing the <BREAK> key will be handled a certain way at the
first of your program. However, in the second part of your
program you might want BASIC to handle <BREAK> in the normal
way. You may then use RESET BREAK to get BASIC to ignore the ON
BREAK GOTO statement.

Note: Also sese ON BREAK GOTO

Example

RESET BREAK

Causes BASIC to ignore the previocus ON BREAK GOT0, statement and
handle <BREAK> in the normal way.

Sample Program

B T T e

See ON BREAK GUTO.

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

-= STATEMENT --

RESET ERROR
Disable Error Handling

RESET ERROR disables an ON ERROR GOTO statement. Although ON
ERROR GOTO is disabled every time it is used, RESET ERROR
disables an ON ERROR GOTO statement that has not yet been used.

Note: Also see ON ERROR GOTO, ERR, ERROR, and RESET GOSUB.

Example

If you are using ON ERROR GOTO to trap a possible error in one
part of the program, but don't want any errors trapped in
another part of the program:

RESET ERROR

Would cause the ON ERROR GOTO statement to be ignored.

Sample Program

8@ REM #%% SAMPLE PROGRAM DEMONSTRATING RESET ERROR ##%
?0 REM

188 ON ERROR GOTO 1G6

112 PRINT "INPUT A NUMBER®

128 INPUT A

138 RESET ERROR

148 PRINT "THE NEXT ERROR IN THIE PROGRAM®

138 PRINT *WILL BE HANDLED IN THE NORMAL WAY™

168 PRINT A/D

Radie fhaek

PAGE 6 - 154

MODEL I/III COMPILER BASIC BASIC EEYWORDS

17@ STOP
180 IF ERR <x 5 THEN ERROR ERRE
198 PRINT "YOU MAY ONLY INPUT & NUNMBER®
200 GOTO 108

RUN

INPUT A NUMBER

? ER

YOU MaAY ONLY INPUT A NUMBER

INPUT A NUMBER

7 43

THE NEXT ERROR IN THIG PROGRAM

WILL BE HANDLED IN THE NORMAL WaY

DIVISION BY ZERG ERROR LINE 148
1. E+&63

S7T0P LINE 178

PAGE 6 - 155

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

-— STATEMENT --

RESET GOSUB
Clear All Returns

Whenever GOSUB is used, the Computer must store the return
address. Normally, this return address is cleared when the
RETURN statement is executed.

However, if an error handling routine is executed, these return
addresses might never be cleared. By using the RESET GOSUB
statement in your error handling routine, BASIC will clear all
of these return addresses.

Note: Also see ON ERROR GOTO, GOSUB, and RETURN.

Examples

RESET GOSUB

This statement clears all return addresses.

Sample Program

i® REM *%% RESET GOSUE STATEMENT *x*
15 DIM ©%1

2@ ON ERROR GOTO 1000

3@ PRINT "SELECT OPTION 1y 2+ OR 3% "3
40 8% INPUT$(2)

5@ 0% = VALL(EB$)

& ON 0% GOSUR 100. 208, 300

78 GOTO 3@

1@ PRINT "OPTION 1°

1183 RETURN

i

Radio fhaek

PAGE 6 - 156

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

Sl PRINT "OPTION 27

210 RETURN

AP PRINT "OPTION 3¢

318 RETURN

1828 RESET GOSUR

1818 6070 30
*HU
SELECT OPTION 1s 2. OR 3: 1
OPTION 1
SELECT OPTION 1s 2y OR 3@ =
OPFTION 2
SELECT OPTION 1s 2y OR 3@ 2
OFTION 3

Radie fhaek

PAGE 6 - 157

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

-- STATEMENT --

RESTORE
Reset Data Pointer

When the Computer is READing data, it will read the data from

the DATA statements sequentially and quit reading when all the
data has been read. This means that without RESTORE, you can

only use each data item once.

RESTORE causes the next READ statement to start over in reading
the first item in the first DATA statement again. If you
specify a line number it will start over reading the first data
item on that particular DATA line.

Examples

RESTORE 300

The next READ statement will begin reading the first data item
on the DATA statement at line 300.

RESTORE
The next READ statement will begin reading the first data item
on the first DATA statement line.

Sample Program

80 REM #%% SDAMPLE PROGRAM DEMONGETRATING RESTORE ®%%
Y@ REM

95 REM

188 REM #k% READ IN PROMPTS #x%

18% REM

110 DATA "TRY ANOTHER ANGWER": "KEEP TRYING""IT BEGINES WITH AN AY."LAETY
128 READ FPROMPTS
138 IF PROMFT® = "LAGT" THEN RESTORE: GOTO 128

Radie fhaek

PAGE 6 ~ 158

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80"
140 REM
145 REM
158 REM *¥#¥% PEGIN GEOGRAPHY EDUCATION PROGRAM %%
155 REM

168 PRINT "WHAT IS5 THE CAPITAL OF TEXABY

178 INPUT A%

188 IF A% <> "AUSTIN® THEN PRINT PROMPTE @ GOTO 128

199 PRINT "VERY GOOD..THAT'E THE ONLY QUESTION WE HAVE FOR NOW..."

#RUJ

WHAT I8 THE CAPITAL OF TEXAS

7 OAUSTIN

VERY GOOD. . THAT?E THE ONLY GUESTION WE MHAVE FOR NOW...
STOP LINE 198

#RU

WHAT 15 THE CAPITAL OF TEXAB

7 NEWARK

TRY ANOTHER ANSWER

Radio Sfhaek

PAGE & -~ 159

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

~- STATEMENT -~

RESUME
Terminate Error-Trapping Routine

RESUME terminates an error-handling routine by specifying where
normal execution is to resume., Place a RESUME statement at the
end of an error-trapping routine. That way later errors can
also be trapped.

RESUME causes the Computer to return to the statement in which
the error occurred. RESUME NEXT causes the Computer to branch
to the statement following the point at which the error
occurred.

Example

RESUME

If an error occurs, when program execution reaches the line
above, control will be transferred to the statement in which the
error occurred.

Sample Program

88 REM 5% GAMPLE PROGRAM DEMONSTRATING RESUME =%
8 REM

188 ON ERROR GOTO 508

1180 READ A

120 PRINT Al
138 GOTO 11@
14@ DATA 1y 2 3y 4+ 5. &

Radie fhaek

PAGE 6 - 160

MODEL

I/III COMPILER BASIC

)

-

BASIC KEYWORDS

154
58
518
Sei
533
5o
558
56

¥R
i
i
&IN
T YES
i
5
AIN
7 NO

TRS-80%

STOR

IF ERR <> 7 THEN ERROR ERR

PRINT "DO YOU WANT TO PRINT THE LLIST AGAINY
INPUT R%

IF RE = "NO" THEN STOP

RESTORE

OM ERROR QOTO 540

RESUME

3

o R

3

B

ETOP LINE 538

4

DO YOU WANT TO PRINT THE LIST AG

4

& DO YOU WANT TO PRINT THE LIST AG

Radio Shaek

PAGE 6 - 161

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

-~ STATEMENT --

RETURN
Return Control to Calling Program

RETURN ends a subroutine by returning control to the statement
immediately following the most-recently executed GOSUB. If
RETURN is encountered without execution of a matching GOSUB, an

error will occur.

Example

RETURN

This line ends the subroutine, returning execution back to the
line immediately following the most recently executed GOSUB.

Sample Program

1% REM *%% GAMPLE PROGRAM DEMONSTRATING RETURN %%
0 REM

3@ PRINT "THIS PROGRAM FINDS THE AREA OF A CIRCLE"

4% PRINT “"TYPE IN A VALUE FOR THE RADIUS®

5@ INFUT R

&0 GOSUB 80

70 PRINT "AREA I8": A: STOF

B0 & = 3.14 ¥ B ¥ R

S@ RETURN

#F

THIG PROGRAM FINDE THE AREA OF A& CIRCLE
TYPE IN A VALUE FOR THE RADIUS

718

ARES I8 1817.3%6

STOP LINE 78

Radie fhaek

PAGE 6 - 162

MODEL I/III COMPILER BASIC BASIC KEYWORDS

—— FUNCTION -

BHND
Generate Pseudorandom Number

RND produces a pseudorandom number between 0 and 1. Programmers
commonly use it to introduce the element of chance in a program.

This random number is generated by using the current "seed”
number. When you specify a 'number® with RND, RND reseeds the
generator with that ‘number’. To reseed the generator at
random, use the RANDOMIZE statement.

RND always returns a real number between 0 and 1. The examples
below show how to produce random integers higher than 1.

Examples

PRINT RKND
Prints a random number between 0 and 1.

PRINT RND * 2
Prints a random number between 0 and 2.
PRINT INT(RND * 2)
Prints either 0 or 1 at random.
PRINT INT(RND #* 2 + 1}
Prints either 1 or 2 at random.
PRINT INT{(RND * 100 + 1)

Prints & random whole number between 1 and 100.

Radie fhaek

PAGE 6 - 163

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

A = RND

A random number between 0 and 1 is assigned to A.

Sample Programs

B b L T p—p———

8@ REM *%% SAMPLE PROGRAM DEMONSTRATING RND *#%

2@ REM

9% RANDOMIZE

1@@ X = INT(RND(@) % &) + 1

11@ Y = INT(RND(Q) % &) + 1

LE@ PRINT: PRIMT "YOUR ROLL I5"35 X3 "AND"5 Y3§ "o "X o+ Y
*¥RUN
YOUR ROLL IS & AND B w11

STOR LINE 126

Radio fhaek

PAGE 6 - 164

MODEL I/III COMPILER BASIC BASIC REYWORDS
TRS-80™

-~ PFPUNCTION -—

SEGS
Get Substring

SEGS$ returns a substring of 'string'. The substring begins at
‘position' in the 'string' and is 'length' characters long.

Examples

If AS = "WEATHERFORD" then
PRINT SEGS$(AS$, 3, 2)
Prints 'AT',
F$ = SEGS(AS, 3)

Puts 'ATHERFORD' into FS.

Sample Program

- ——-—— 1~ 7~ -~ - -

88 REM *¥¥% SAMPLE PROGRAM DEMONSTRATING SEGS ®%%
20 REM

190 PRINT "AREA CODE AND NUMBER (NNN-NNN-NNNN)®

118 INPUT PHsS

28 EX$ = SEGHE(PHE:D:3)

138 PRINT "NUMBER IS IN THE "3 EX#®3 ® EXCHANGE®

140 GOTO 1068

Radie fhaek

PAGE 6 =~ 165

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

- FUNCTION -~

SGH
Get Sign

This function returns the sign of the ‘number'. It returns a l
if the number is positive, 0 if it is a 0, and -1 if it is
negative.

Examples

T T —

PRINT SGN{5)

Prints 1.

PRINT SGN(-5)
Prints -1.

PRINT SGN{0)
Prints 0.

Y = SGN(A * B)

Determines the value of A * B and assigns the appropriate
number (-1, 0, 1) to Y.

PRINT SGN(N)

Prints the appropriate number.

Sample Program

P kL Ty —————

Radie fhaek

PAGE 6 - 166

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

8@ REM #%% DAMPLE PROGRAM DEMONSTRATING SGN #%%
Y@ REM

198 PRINT "ENTER A NUMBER®

118 INPUT X

120 ON BONIX)Y + 2 GOTO 138. 148y 158

130 PRINT "NEGATIVEY @ STOP

148 PRINT "IZIERG" @ BTOPR

158 FRINT "POBITIVEY @ STOP

*H

ENTER A& NUMBER
7 3

FOBITIVE

STOF LINE 158
R

ENTER A NUMBER
7 -8

NEGATIVE

ETOP LINE 138

Radie fhaek

PAGE 6 - 167

MODEL I/II1 COMPILER BASIC BASIC KEYWORDS
TRS-80™

== PFPUNCTION ~--

SIN
Compute Sine

SIN returns the sine of the 'number', which must be in radians.
To obtain the sine of X when X is in degrees, use SIN(X *
.01745329251993).

The result is always a real number.

Examples

W = SIN(MX)
Assigns the value of SIN(MX) to W.
PRINT SIN(7.96)
Prints the value .994385.
E = (A * A) * (SIN(D)/2)
Performs the indicated calculation and stores it in E.
Note: Trigonometric functions are not loaded when you load the
BASIC Compiler; they are loaded upon demand. This might cause a

slight delay when using these functions, since they must be
loaded into the system first.

Sample Program

T Y e " —— — o -~

Radie Shaek

PAGE 6 - 168

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

80 REM *¥% SAMPLE PROGRAM DEMONSTRATING SIN *%#%
98 REM

190 PRINT Y INPUT AN ANGLE IN DEGREES®

110 INPUT A

120 PRINT "SINE IS": SIN(A * .017435329)

138 GOTO 108

*RU

INPUT AN ANGLE IN DEGREES
738

SINE IS5 8.5

INPUT AN ANGLE IN DEGREES
7 g

SINE I5-8.13%9173

Radie Sfhaek

PAGE 6 - 169

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

~= FUNCTION --

SQR
Compute Square Root

SQR returns the square root of the 'number'. The result is
always a real number.

If ‘number is a negative value, SQR will print a warning and
then return the sqguare root of the absolute value of 'number®.

Exanples

PRINT SQR(9)
Prints 3.

PRINT SQR{6 + 3)
Prints 3.

PRINT SQR(155.7)
Prints 12.478.

Y = SQR(A * B)

Assigns the value of the sguare root of A # B to Y.

Sample Program

Badio fMmaek

PAGE 6 ~ 170

MODEL I/III COMPILER BASIC BASiC KEYWORDS
TRS-80™

2 REM #¥% DAMPLE PROGHRAM DEMONETRATING BGR *#%x

@ REM

BB PRINT "HNUMBER": YHBOUARE ROOTYy S“RUMBER®: "DQUARE ROOTE
138 FOR X o= 1 To 44 BTER &

e FPRINT Xs DQR{X)s X + 1« SOQRX + 13

138 MEXT X

148 GOTO 148

#H}
MUMBER SOUARE ROOT NUMBER SEUARE ROOT
i = i 41421
1, 73205 4 Z
2. 23687 & fu@ﬁ?&?
2. 64575 o R M S T

3 14 3,1&L;&

i . 31A82 id A 4b41
3 2. 6BE55 14 3. 74166
i J. 8727 id 4

7 NS D S 18 . 28264
o

4. 3509 =8 LIS B
: . 4. 58258 z2 &, HFBLE
23 4. 79583 24 4, B
S 2é 5. @998z
- 1P6LE =8 5.2%915
- 38514 A S %77””
L EETVA 3% 5. 6548
« TAG85E 34 ﬁuEEE?E
25 ~391$@8 3& &
37 L. 882746 38 H. 160451
A9 L. 245 4@ b 22458
i & HB3L2 4% b 48874
43 L. B5T744 44 & EZAEE

[R S T "’"’“"’“-G”“JU?WMQ:W

ol

o
il
it

jo%]
£}
M!T"“ix,,ﬂ&“ﬂ{n

PAGE & - 171

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

== STATEMENT --

STOP
Stop Program Execution

STOP terminates execution of your program at the line number you
specify. Normally, STOP is used to terminate execution at a
line other than the end of the program.

Unlike END, the compiler will compile the entire program
including the lines following the STOP statement. However, when
the program is executed, no lines after STOP will be executed.

Note: STOP is used 1in the same manner END is used with the

BASIC Interpreter.

Example

STOP

This l1line 1s the last line executed. No lines following it are
executed.

Sample Program

B REM *¥% GAMPLE PROGRAM DEMONSTRATING STOP %%
G0 REM

108 PRINT "DO YOU WANT TO CONTINUE®

110 INPUT A% ‘

1500 IF A$ = "YEG" THEN 14D

138 STOR

148 PRINT "THE REST OF THE FROGRAMY

Radie fhaek

PAGE 6 - 172

YWORDE

o)
5

MODEL I/III COMPILER BASIC BASIC
TRS-80™

b

3

- FUNCTION -—-

STRS
Convert to String Representation

STR$, the inverse of VAL, converts the ‘number® to a string.

For example, if X = 58.5, then STRS(X) equals the string

" 58.5", Notice that a leading blank is inserted before 58.5 to
allow for its sign.

While numeric operations {such as addition, subtraction,
multiplication, and division) may be performed on X, only string
functions and operations may be performed on the string " 58.57",
You may use an image with STRS$ to specify the format in which
you want the number printed. See PRINT USING for information on
how to construct an image. If you don't use an image, the

number will be printed in the real number format. See PRINT for
an explanation on how real numbers are printed.

Examples

A$ = STRS$(100) & " DOLLARS"
Assigns "100 DOLLARS" to AS.

PRINT "NUMBER " & STRS(6+3)
Prints NUMBER 9.

S$ = STRS(X)

Radie &

PAGE 6 - 173

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

Converts the number X into a string and stores it in SS$.
PRINT STR$(10000000)
Prints 1.E+7. (See PRINT for an explantion of the E notation.)
A§ = STR$(35592163)
Assigns "35592163" to AS.
PRINT STR$(600000000, "########")
Prints "600000000".
PRINT STR$(60000000)
Prints 6.E+8.
PRINT STRS$(35.24, AS)

Prints "35.24" in the format contained in AS.

Sample Programs

5 REM *%% DAMPLE PROGRAM DEMONSTRATING STRE *%%
& REM
18 PRINT "INPUT ITEM NUMBER"
153 INPUT ITEM
@ OPRINT "INPUT COST OF ITEM"
25 INPUT COBT
Aa PRICE = COBT % 2.5
480 CODE$ = "I" & STR$(ITEM) & "C" & STRE(COBT) & "P" & STR$(PRICE)
3@ PRINT "ITEM I8 NOW CODED A5 ": CODE$ @ GTOP

*RU

INPUT ITEM NUMBER
7 4

INPUT COST OF ITEM
7 4.95

ITEM IS NOW CODED AL I14C4.95P1x2. 375
STOP LINE 5@

Radio Shaek

PAGE 6 - 174

MODEL

I/111

COMPILER BASIC BASIC KEYWORDS
TRS-80®

i@
23
34
40
5@

*RU

PRINT
INPUT
FRINT

PRINT
PRINT

"TYPE A NUMBER WITH 14 DIGITS OR LES&Y

A

"THE NUMBER WITHOUT THE FORMAT I8 PRINTED ":; STR$(A)
"THE NUMBER WITH THE FORMAT * H&#$348#. #8816 v
ETRE (A " HEHHEE . $H483HE")

TYPE A NUMBER WITH 14 DIGITE OR LEES

7 789.766042
THE NUMBER WITHOUT THE FORMAT I8 PRINTED :789.76&67
THE NUMBER WITH THE FORMAT ~#¥#HHEE. SR 16 2789.76653420

STOP LINE 5@

Radie Shaek

PAGE 6 - 175

MODEL I/III COMPILER BASIC BASIC KEYWORDS

STRING
Define Variables as Strings

STRING causes all variables in the grogvam to be classified as
string unless a type declaration tag is d. All string

variables will be stored as if they have 5 characters unless .
you specify a iengta%

ity

use
25

;_&

If you use ‘letter~-list'®, only

variable names beginning with
those letters will be classified as stri

.

e

&
Ui

ter on BASIC Concepts.

3

Note: For more ianformation, see the chas

Examole

TRING C, L—2
;”auseﬁ any variables beginning with the letters C or L through 2
to be string variables, unless a type declaration is added.
FEach of these variablesg will be szzrnd as a 255~character
string.

STRING

Causes all variables toc be 255-character string variables,
unless a type declaration tag is used.

STRING*5

Radie fhaek

PAGE 6 - 176

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

Causes all variables to be S5-character string variables, unless
a type declaration tag is used.

STRING*1 A-F

Causes all variables beginning with the letters A through F to
be l-character string variables unless a type declaration tag is
used.

Sample Programs

1 REM xx% GTRING STATEMENT #%%
0 BTRING®&4 L

A0 STRING*1

4B PRINT “TYPE IN A MESSAGE®

B0 INPUT L

A PRINT "TYPE IN A SINGLE CHARACTER *3
7RG o= INPUTH{1)

BB PRINT "THE MESSAGE WAS: "3 L

@ PRINT °THE CHARACTER WAS: "3

#HLJ

TYPE IN A& MESSAGE

TOTHIS IS A TEBY

TYPE IM A SINGLE CHARACTER ©
THE MESBAGE WAG: THIS I5 & TEST
THE CHARACTER WaAL: &

BTGP LINE 98

Radie Sfhaek

PAGE 6 - 177

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

ot

-
P

o e §]
i

NCTION ——

STRINGS
Return String of Characters

STRINGS is useful for creating graphs or tables, where you want
to print a large string of the same characters. It returns a
string of the character you specify. How many characters are in
the string depends on the length you specify.

Examples

PRINT STRINGS(10, *-%")
Prints —--——===-—-- .
BS = STRINGS (25, "¥'")

A string of 25 X's - XXAXXXXXAXXKXAKXXAAXAXXKXKXKXKX - 1s stored as
BS.

Sample Program
HBH REM %% DAMPLE FHRGRAM DEMONSTHRATING STRINGE: zex
S OREM
1@ PRINT CHES{ZE): CHR${31) ¢ ¥ &
118 PRINT CETOG: ZHY: "HaALES = EsaOH ITEM?
PRl FOR T o= 1 TO &
136 HEGD & ¢ 4 = X 4+ &
146 FRINT CRT{(Xs@)s "ITEM "y 13 ¥ Ro DTRINGSE{SH: YE")
158 NEXT I
168 GOTO 145
178 DATS 18144480 2825 8

1

Radie fhaek

PAGE 6 - 178

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

-~ STATEMENT -~-

S5UB
Name and Define Subprogram

SUB must always be the first statement in a subprogram. It
names the subprogram and lists its dummy variables. These dummy
variables are given the values of whatever variables or
constants are passed from the main program in the CALL
statement.

For instance, if the SUB statement lists the dummy variable X
{SUB "SUR™; X), and the CALL statement sends it the value Y
(CALL "SUB"™; Y), X will be given the value Y.

The type of dummy variables in the SUB statement must match the
type of variables in the corresponding CALL statement.

Examples

SUB "DEPREC"; A, B
This is the first line of the subprogram named "“DEPREC". The
dummy variables are A and B. They will be contain the value of
whatever variables, expressions, or constants are sent to them
by the CALL statement in the main program.

SURB "TABLE"; AS, B$, C, D, E(,)

Initiates and defines the subprogram named "TABLE". The dummy
variables are A$, BS, C, D, E(,).

SUB "GRAPH"; HORZ, VERT

Initiates and defines the subprogram named "GRAPH". The dummy
variables are HORZ and VERT.

Radie fhaek

PAGE 6 - 179

MODEL I/III COMPILER BASIC BASIC

KEYWORDS

TRS-80"

Note: For more information on subprograms see the Section on

Segmenting Programs. Also see CALL, END, and SUBEND.

Sample Program

B T T Ty p——

8@ REM *¥¥% SAMPLE PROGRAM DEMONSTRATING SUB #%%
@ REM
108 A% = “BIT7/927-58546"

118 Bs = "612/633-3811°

128 PRINT "TELEPHONE NUMBERS @7

130 PRINT A$: PRINT Rs$

148 Call "AREA"; A%

158 CALL "AREA": B$

168 PRINT "THE AREA CODER ARE "3 A%3 " AND "3 B$
178 END

ige SuUR "AREA"Y T%

1900 T = BEGH{THy1:3)

sa@ BUBEND

*RU

TELEPHONE NUMBERS ¢
HI7/927-5856

H1Z2/7633~5811

THE AREA CODES ARE 817 AND &12
STOP LINE 170

Radie fhaek

PAGE 6 - 180

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

~- STATEMENT --

SUBEND
End Subprogram

SUBEND is the last statement in the subprogram. It returns
execution back to the statement in the main program immediately
following the statement which CALLed the subprogram.

Example

i st s s nom it

SUBEND

Returns control back to the main program.

Note: For more information on subprograms, see the section on
Subprograms. Also see CALL, END, and 5UB.

Sample Program

8B REM w44 HAMPLE PROGHRAM DEMONSTRATING SUBEND %x%
@ OREM
15 = RWD (@

X
113 Y = RND@)
1200 PRINT "BEFORE EXECUTING THE SUBROUTINE®
136 PRIMT Y ="3; X3 * AMD ¥ ="%1 ¥
148 CalLl. "RaMD": X
15@ CALL. "RAND": ¥
1A PRINT PAFTER EXECUTING THE BUBROUTINE®
17 PRINT "X ="% K3 ® AND ¥ ="3 ¥
18@ PRINT "TRY IT AGAIN®:
193 INPUT R$
AR IF R% o= "YES® THEN 108

Radio fhaek

PAGE 6 - 181

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

L@ END

SUBR "RANDY S A

A o= CVTLA % 103
SUBERD

—-— STATEMENT --

SWAP
Exchange Values of Variables

The SWAP statement allows the values of two variables to be
exchanged. Either or both of the variables may be elements of
arrays. Both variables must be the same type or a Type Mismatch

error will result. ‘

Example

SWAP Fl, F2

The contents of F2 are put into F1l, and the contents of Fl are
put into F2.

Sample Program

1@ REM ¥E% SAMPLE PROGRA&M DEMONETHRATING SWAP ®ex

wE REM

A REM w&& BUBEBLE SORT USIHG SWHAP %

489 FEHM

SOINTEGER A-Z23 DIM AEE)

&I AalEy = @

TEHOPRINT "HERE ARE 58 NUMBERS BETWEEN 1 AND 1H8Y

BA OFOR T o= 1 TO 58 ATy = CVIGHENDE)#1H@a+1) s PRINT adlyy s MEXT

G OPRINT: PRINT: PRINT "HNOW SORTING DATA. START TIME = "3 TaR48)Y: TIMES
103 F o= By K o= @ fOREM OF iz zet when & swar 15 mades W iz counter
18% REM ##% zyar and zet PR .

Radio fhaek

PAGE 6 - 182

MODEL I/III COMPILER BASIC

BASIC KEYWORDS

TRS-80™

- A RELY THEN SHAP a{kK)s
Ko+ 1: IF K < 5@ THEN 118
#%% Yo throudh data
I THEN 186
TDATA SBORTED. END
PRINT "HERE IT I8
= 1 TO 5@ PRINT &(13:

118 IF
1@ Ko o=
12% REM
138 IF F =
148 FRINT
153 PRINT:
168 FOR I
#Ri
HERE ARE
30 3@
&8 35
HO9E

£

LE 94

AR

1@
a1
75

28

58 NUMBERE BETWEEN 1 AND
S3 2B w4 BT 33 340 36
T wn 2@ ig 17 4z

B4
13 41 39 18 8B g3 35

DATA. START TIME =
END TIME =

MOW SORTING
DATA GOHTED.

N
1é
346 AW
7E B
STOP LINE

ORDER:
17 18
39 A48
an e

168

HE RE
I
534
o7
100

IT 1%
15 28
43

8o

3]
Aty

i8
41
B3

=@
43
: 24
&

Radio fhaek

PAGE 6 - 183

atdain

TIME == "3
IN ORDER:
NEXT

ALKE1) 2

urtil

TaR (483

H

1

&Y

88
1A

@1

7
3

HEOE

r.:

&
@
&

R

alnd

@B1:42:35

l s

G5
&

32

A3

&

L ¥

1

@ wws

TIMES

b

33
&9
95

33
a9

9% 8z

&HE
&%

4 35
7 70

95 897

RANN I N

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

~- STATEMENT -~

SYSTEM
Return to TRSDOS

SYSTEM will stop RSBASIC and return you to TRSDOS READY. The

resident BASIC program will be lost.

Example

PRSP S —y

100 SYSTEM

Badie fhaek

PAGE 6 - 184

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

~~ FUNCTION -~

TAB
Tab to Position

TAB used in a PRINT or LPRINT statement moves the cursor to the
column position specified. TAB may only be used in a PRINT or
LPRINT statement.

Note: See CRT for an illustration of the 64 column positions on
the video display.

Examples
PRINT TAB(5);"TABBEDS5";
This prints:

TABBED 5

Sample Program
8@ REM % SAMPLE PROGRAM DEMONSTRATING TAB ®%%
2@ REM
108 PRINT CHR$(28)s CHR#$(31)
11@ PRINT TAR(Z)3 "CATALOG NO."s TAB(1&6); "DESCRIPTION OF ITEM"S
1200 PRINT TAB(3%9)s "QUANTITYY3 TAR(51)3 "PRICE PER ITEM®

CATALOG NO. DESCRIPTION OF ITEM GUANTITY PRICE PER ITEM

STOP LINE 130

Radie fhaek

PAGE 6 - 185

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

-— FUNCTION --

TAN
Compute Tangent

TAN returns the tangent of the 'number'. The number must be in
radians. To obtain the tangent of ‘X when X is in degrees, use
TAN(X * .01745329251994). The result is always a real number.
Examples

L = TAN(M)

Assigns the value of TAN(M) to L.

PRINT TAN(7.96)
Prints the value -9.39696.

Z = (TAN(L2 - L1))/2
Performs the indicated calculation and stores the result in Z.
Note: Trigonometric functions are not loaded when you load the
BASIC Compiler; they are loaded upon demand. This might cause a

slight delay when using these functions, since they must be
loaded into the system first.

Sample Program

Radie fhaek

PAGE 6 - 186

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

80 REM ¥#% SAMPLE PROGRAM DEMONBTRATING TAN #x%
0 REM

180 PRINT *INPUT ANGLE IN DEGREEG®

113 INPUT ANGLE

1z2@ = TAN{ANGLE % .@1743329)

130 PRINT "TANGENT IS T

140 GOTO 10@

*RU

INPUT ANGLE IN DEGREES
7 30

TANGENT IS B.57735
INPUT ANGLE IN DEGREES
T 45

TANGENT IS5 1.

Radie Shaek

PAGE 6 ~ 187

MODEL I/III COMPILER BASIC BASIC XEYWORDS
TRS-80 "™

-— FUNCTION --

TIMES
Get the Time

This function lets you use the time in a program.
The operator sets the time initially when TRSDOS is started up.
When you request the time (with PRINT TIMES$), BASIC will supply
it using this format:

14:47:18

which means 14 hours, 47 minutes, and 18 seconds {(24-hour clock)
or 2:47:18 PM.

To change the time, use the TRSDOS command, TIME. For example:
TIME 13:30:00 (You can only do this under TRSDOS.)

sets the time to 13 hours and 30 minutes {and 0 seconds) or 1:30
PM.

Even if the operator never sets the time, TRSDOS will record the
time at 00.00.00 when the system is started up and keep a record
of how much time has passed.

Examples

PRINT TIMES
Prints the time.
A$ = TIMES

When this line is reached in your program, the current time is
stored as AS.

Radie Sfhaek

PAGE 6 - 188

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

Sample Program

BH OREM #%% HAMPLE PROGRAM DEMONDTRATING TIME$® =%

9@ REM

188 T% = TIMES @ IF SEGH(TEHE:1:5) = "1@:157" THEN 128

118 GoTo 186

12@ PRINT *TIME I8 18:15 A.M. - TIHE TO FPICK UP THE MaIL®

Radie fhaek

PAGE 6 - 189

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

=— FUNCTION --

VAL
Evaluate String

VAL is the inverse of STR$. It converts the characters in the
'string' to their numeric value. VAL returns a real number.
VAL% returns an integer.

VAL gquits looking for numeric characters as soon as it hits a
character that has no meaning. For instance VAL(10Z5) returns a

10 -- it stopped its search when it encountered the Z and
returned 10, the current numeric value.

If the string contains no numbers or is null (has a length of
zero), VAL returns a 0. .

Examples

PRINT VAL("100 DOLLARS")

Prints 100.
PRINT VAL("100 DOLLARS AND 50 CENTS")
Prints 100.
PRINT VAL("1234E8")
Prints 1234E+8 (1234 * 10 ** 8)
PRINT VAL("ONE")
Prints 0.
X = VAL("12.58")

Assigns the number, 12.58 to X.

Radio fhaek

PAGE 6 - 190

MODEL I/III COMPILER BASIC BASIC
TRS-80™

KEYWORDS

A = VAL(BS)
Assigns the numeric value of B$ to A.
PRINT VAL%("12.58")

Prints 12

Sample Program

B@ REM #a% SAMPLE PROGRAM DEMONSTRATING VAL ##s
9@ REM

1@ REM ##% WHAT SIDE OF THE BTREET 7 ##%%

118 REM ##% NORTH IS5 EVEN: SOUTH I8 ODD =%

128 REM

125 PRINT "ENTER THE ADDRESE (NUMBER AND STREET) °
138 LINE INPUT AD$

148 C = CVI{VAL(AD®)/2) % 2

158 PRINT O VAL (AD$)

168 IF C = VAL{ADS) THEN PRINT "NORTH SIDE® :@: GOTO 129

1780 PRINT "S80OUTH SIDEY @ GOTO 138

#RU
ENTER THE ADDRESS (NUMBER AND STREET)
7 5688 JANE ARNNE
568 H608
NORTH SIDE
ENTER THE ADDRESE (NUMBER AND STREET)
7 3215 OAKLAWN
3214 LIS B
H0UTH SIDE

Radio fhaek

PAGE 6 - 191

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

-~ STATEMENT -—-

WRITE to a disk file
Write to Disk

This statement performs disk output of binary records for
subsequent input by an analogous READ statement. ‘item-list’
must match the ‘item-list' to be used when the record is read,
in number and type of data items.

See "Data Files®™ for a discussion of file access under RSBASIC.

Examples

e v

WRITE #1; A+B

Radio fhaek

PAGE 6 - 192

MODEL I/III COMPILER BASIC BASIC KEYWORDS
T™RS-80™

The value of A+B is written to file-~unit #1.
WRITE $#2, KEY=NAMES; PAYRAT, EXEMPTS%

PAYRAT and EXEMPT are written to the record indexed by the
contents of NAMES, in file-unit #2.

WRITE #3, KEY=RECNBR%: PAYRAT, EXEMPTS%
The same two items are written to record number RECNBR%, in

file-unit #3.

Sample Program

See the chapter on data files.

Radie fhaek

PAGE 6 - 193

MODEL I/IXI COMPILER BASIC BASIC KEYWORDS

TRS-80™

—-= FUNCTION -

XOR
Calculate Exclusive OR

XOR is a logical operation performed on the binary
representations of the two 'numbers’. XOR compares the bits of
the two numbers to see if they are identical or different. A
binary 0 is returned if the two bits are identical; a 1 is
returned if they are different: '

First Second Bit
Number Number Returned
1 1 0
1 0 1
0 1 1
0 0 0

The binary number rveturned is represented as an integer.
If 'number’® is a real number, BASIC will convert it to an

integer.

Examples

PRINT XOR(72,32)

Prints the result, 104. The operation is performed on the
binary representation of the two numbers:

Integer Binary
Representation
72 01001000
32 001060000
104 01101000

Radie fhaek

PAGE 6 - 194

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™
PRINT XOR(104,32)
Prints 72:
Integer Binary
Representation
104 01101000
32 00100000
72 01001000

IF XOR(255,A) >= 128 THEN PRINT "SET BIT 8"

Performs the XOR operation on 255 and the value of A. If the
condition is true, the statement is printed.

Note: Also see OR and AND.

Sample Program

8o REM ¥x% DAMPLE PROGRAM DEMONSTRATING XOR ®%%
@ REM

108 PRINT "INPUT A LOWER OR UPPER CASBE LETTER®

110 INRFUT A%

120 B3 = CHR$XORIABCOASY « 320D

138 PHRINT B

140 GOTO 182

U

TNPUT & LOWER OR UPPER CASE LETTER
7 K

i

INPUT A LOWER OF UPPER CABE LETTER
7K

k

Radio fhaek

PAGE & - 185

TRS—-80 MODEL I/III BASIC BEDIT

TRS-80™

TABLE Or CONTENTS
SECTION 3. BEDIT -- SOURCE PROGRAM EDITOR

INTRODUCTION « + « v v o & o @ o o o« o .7 =2
SOURCE FILE FORMAT . . 4 o« o « s o o o 4 = 2
TO START THE EDITOR . .+ ¢ v o & s o « 1 — 3
MODES OF OPERATION . ¢ &+ « o o ¢ = s o 1 — 4
USING THE COMMAND MODE . . Y
SPECIAL KE¥S IN THE COMMAND MODE s s . <1 = B
COMMANDS N
B {PRINT BOTTOM LINE} e e o s s e «f = 8
C (CHANGE) + + « o o o o « « « v o .7 -8
D (DELETE) ¢ . + & « o « s s = « s 1 =39
E (EDIT) « « 2 o o « o o v v o o o 7 =9
F (FIND) « « v o o = « o o « « « o 7 =11
H (HARD COPY}) Y. . ¢« . .7 =11
I (INSERT) + ¢« « ¢ o o o o o « « o 1 =12
L (LOAD FROM DISK) e e s o s s & 7 =13
M (MEMORY USED/FREE) o e s e e o o« 1 = 13
N (RENUMBER)* ., ., e e e s s o o 1 — 14
P (PRINT TO DISPLAY) B A X
Q (QUIT SESSION) . « « « « . - . . 7 =15
R (REPLACE) e + o o s e« s e« a o . 1 =15
T (PRINT TOP LINE) . . + + « « - « 1 — 16
W (WRITE TO DISK) . . e « o o o 1 - 16
X (CHANGE WITH PROMPTS) s e e o« o 1 =16

Note: Do not use the renumber command inside your program text,
unless you are not concerned with line references (GOTO,
IF...THEN..., GOSUB, etc.). To renumber your program properly,
use the compiler BASIC RENUMBER command.

Radio fhaek

PAGE 7 - 1

TRS-80 MODEL I/III BASIC BEDIT
TRS-80™

INTRODUCTION

BEDIT lets you create and edit BASIC source files {(the files
that are input to the BASIC Compiler).

Capabilities and features:

. Allows you to load in ("chain") multiple source files
Single-key abbreviations for many commands
Powerful intra-line editing mode like the edit mode in
Model I/III Interpreter BASIC

. "M" command informs you of memory used/free at any time

. Global string find/change commands

. Editor provides line numbers in the range 0-65535

SOURCE FILE FORMAT

Source files are written to disk in the format required by the
BASIC compiler, as follows:

1. Files are variable-length record (VLR) type, as described in
the TRSDOS Reference Manual.

2. Bach record in the file corresponds to one line of source
program. The first six data bytes (after the length-byte) in a
record represent the line number in ASCII form followed by a
blank space. The carriage return (<ENTER>) used to terminate
the line during line insertion is not stored.

3. Text is stored exactly as it is displayed on the video, e.g.,
spaces are stored as spaces, not as a tab character.

4, No end-~of-text code is stored in the data file.

Radie fhaek

PAGE 7 ~ 2

TRS-80 MODEL I/III BASIC BEDIT
TRS-80™

TO START THE EDITOR

The editor program is included on the BASIC package diskette.
It has the file name BEDIT.

To use the editor, put the BASIC diskette into one of your
drives (drive 0 for single-drive users), and under TRSDOS READY,

type:
BEDIT
The editor will start up with the message:

TRS~80 Basic Editor Ver. v.r
Copyright (c) 1980 Tandy Corp.

>

Where v 1s the version and r is the release number. The >
indicates you are in the command mode.

Radie fhaek

PAGE 7 - 3

TRS-80 MODEL I/III BASIC BEDIT
TRS-80™

MODES OF OPERATION

There are three modes of operation:
. COMMAND, for entering the editor commands
. INSERT, for entering your text lines
EDIT, for interactive editing of a line of text

COMMAND MODE

The > prompt followed by the blinking cursor indicates the
editor is waiting for you to type in a command. Every command
must be completed by pressing <ENTER>. To cancel a command,
press <BREAK>.

INSERT MODE

You enter text one line at a time; a line consists of up to 255
characters, including the five-digit line number provided by
BEDIT. Line numbers can range from 0 to 65535.

The I command puts you in the insert mode. When you start
inserting a line, the editor displays the five-digit line number
followed by the blinking cursor. Your text can begin in column
seven. (See the BASIC Language Reference Manual for column-field
uses in BASIC source programs.)

To store the current line, press <ENTER>. The editor will
display the next line number, and you can begin inserting into
that line. To cancel the current line and return to the command
mode, press <BREAK>. See the I Command for details.

EDIT MODE

There are many powerful edit sub-commands -- identical in most
cases to those in Model I/III Interpreter BASIC's Edit Mode.
There is also a sub-edit insertion mode in which the keys you
type are inserted into the line at the current cursor position.

To start editing a line, use the E command. After editing the
line, press <ENTER> to save the corrected line and return to the
command mode. To cancel all changes made and return to the
command mode, press <Q>. For further details, see E Command.

Radie fhaek

PAGE 7 -~ 4

TRS-80 MODEL I/III BASIC BEDIT

USING THE COMMAND MODE

Special terms used in the command descriptions:

"text ™, "text buffer”, "text area"
All refer to the BASIC source program currently in RAM.

"current line"

The line most recently inserted, displayed or referenced in a

command. When there is no text in RAM, current line is set to
100. Immediately after a file is loaded, the current line is

set to the beginning of the text.

"increment"
The value which is added to the current line number whenever the

editor needs to compute a new line number. After startup,
loading a new file, and when there is no text in RAM, the
increment is set to 10.

¥line~-reference"”
Either an actual line number from 0 to 65535, or one of the
following special abbreviations:

Symbol Meaning
Beginning line of text (lowest-numbered line)
. Current line
* Last line of text (highest-numbered line)

"line-range"
This can be either a single-line reference or a pair of
line-references separated by a colon:

Sample

Command Meaning

P100 Prints line 100 only

P100:300 Prints all lines from 100 to 300

P#:. Prints all lines from beginning to current

Radie fhaek

PAGE 7 - 5

TRS~-80 MODEL I/III BASIC BEDIT

TRS-80™

"delimiter"
A special character used to delimit (mark the beginning and end
of) a string. Any of the following characters can be used:

FPrE S sse (), -0/ <= > 7

-y

Whichever character is used to mark the beginning of a string
must also be used to mark the end of the string.

Sample use... Marks this string...
'THIS " MARK' THIS * MARK

/X'8000"/ X'8000°

&~ &8 TTTmTT (seven blanks)

(The "7" symbol represents a blank space. It is used only where
necessary for emphasis or illustration.)

SPECIAL KEYS IN THE COMMAND MODE

<BREAK>
Press this key to cancel the command you are entering, or to

abort a command which is currently being executed.

->
Advances the cursor to the next eight-column boundary
(boundaries are at columns 8, 16, 24, ...)

<ENTER>
Pressing this key at the beginning of a command line displays

the current line.

{up—arr0w>
Pressing this key at the beginning of a command line displays
the line which precedes the current line.

<down-arrow>
Pressing this key at the beginning of a command line displays

the next line after the current line.

Radio fhaek

PAGE 7 - 6

TRS-80 MODEL I/III BASIC BEDIT
TRS-80™

shift <-
Erases the command you are entering.

<@>
Pauses H and P commands. Press any other key to continue.

Radie fhaek

PAGE 7 - 7

TRS-80 MODEL I/III BASIC BEDIT

TRS-80™

COMMANDS

Note: Spaces are not significant in command lines. For example,

P 1 : 5
has the same effect as
Pl:5

The P command is explained later on.

B

Displays the bottom line (last line in the text area).

C/search-string/replacement-string/n

Finds, changes, and displays the first n lines that contain
search-string. In each of these lines, search-string is changed
to replacement-string. ONLY THE FIRST OCCURRENCE OF
search=-string IN A SINGLE LINE IS COUNTED AND CHANGED. If the
end of text is reached before n finds, the message "string not
found” will be displayed.

Upon completion of the command, the current line is set to the
line of the last find, or to the first line of text when "string
not found® is displayed.

/search-string/ is a sequence of characters delimited by
a matched pair of characters from the set:

A I A T O L P A N R

replacement-string/ is a sequence of characters terminated
by the same character used to delimit search-string.

n Tells the maximum number of "changes" you want. n can
be a number or an asterisk. The asterisk means change
and list all occurrences. If n is omitted, only the
first occurrence is changed and listed.

Sample
Commands Notes
C/VAR=/NET=/ Changes the first occurrence of

Radio fhaek

PAGE 7 - 8

TRS-80 MODEL I/III BASIC

BEDIT

TRS-80™

C"VAR="NET="
C/RETRY/R/4

"VAR=" to "NET=" in the first
line that contains it.

Same as above.

Changes the first occurrence of
"RETRY" to YR" in the first four
lines that contain it.

C/MISPELING/MIS-SPELLING/*

C/EXTRA//*

b line-range

Deletes lines in the specified range.

Changes the first occurrence of
"MISPELING" to "MIS-SPELLING" in
every line that contains it.
Changes the first occurrence of
"EXTRA" to "™ (null string)

i.e., deletes the first "EXTRA™ in every

line that contains it.

the current line is deleted.

Sample
Commands
D. or D
D2
D98:115

D1000:*

‘E line-reference

Deletes the current line.
Deletes line number 2.

Deletes lines found in the range 98 to

115.

Deletes all lines numbered 1000 or

higher to end of text.

If line-range is omitted,

Starts edit mode using the specified line. If line-reference is
omitted, the current line is used.

Bdit sub-commands:
<ENTER>

shift<up-arrow>

n <SPCBAR>

Ends editing and returns to command mode.

Causes escape from sub-edit insertion

{X, T, and H sub-commands) and returns to

edit mode.

Advances cursor n columns.
If n is omitted, 1 is used.

Radio fhaek

TRS-80 MODEL I/III BASIC BEDIT

TRS-80™

nD

nC

nSc

nK¢

"Lists" working copy of the line and
starts a new working copy.

"Extends" line: positions cursor to end
of line and enters sub-edit insertion mode.
Use shift<up-arrow> to escape to edit mode.

Enters sub-edit "insertion" mode at the
current cursor position; use shift<up-arrow>
to escape to edit mode.

("Again") Cancels changes and starts a new
working copy of the line.

("End") Saves edited line and exits to
command mode, > prompt.

("Quit") Cancels changes and returns to
command mode, > prompt.

"Hacks" remainder of line beginning at
current cursor position and enters sub-edit
insertion mode. Use shift<up-arrow> to
escape to edit mode.

"Deletes™ n characters beginning at current
cursor position. If n is omitted, 1 is used.
The deletion is not echoed; use <L> to see
the line with characters deleted.

"Changes" next n characters from the current
cursor position, using the next n characters
typed. If n is omitted, 1 is used.

("Search") Move cursor to nth occurrence of
character c. Search starts at next character
after the cursor. If n is omitted, 1 is
used.

("Kill") Deletes all characters from current
cursor position up to nth occurrence

of character ¢, counting from current

cursor position. If n is omitted, 1 is
used. The deletion is not echoed; use <L>

to see the line with characters deleted.

Radie fhaek

PAGE 7 - 10

TRS-80 MODEL I/III BASIC BEDIT

TRS-80™

F/search-string/n

Finds and displays the first n lines which contain
search-string, starting at the current line. ONLY THE FIRST
OCCURRENCE OF search=-string IN A SINGLE LINE IS COUNTED. If the
end of text is reached before n finds, the message "string not
found" will be displayved.

Upon completion of the command, the current line is set to the
line of the last find, or to the first line of text when "string

not found" is displayed.

/search-string/ 1is a sequence of characters delimited by
a matched pair of delimiters chosen from the set:

P ESsS 2 Eet ()F A, -) s K =202
n Tells the maximum number of "finds" you want. n can be a

number or an asterisk. The asterisk means find and list all
occurrences. If n is omitted, only the first occurrence is

listed.

Sample

Commands Notes

F/VAR=/ Finds and displays the first line that
contains the string "VAR=",

F"VAR=" Same as above.

F/RETRY/4 Finds and displays the first eight lines
containing at least one occurrence of
"RETRY".

F/MISPELING/* Finds and displays every line containing

at least one occurrence of "MISPELING".

H line-range

("Hard-copy") Lists to the printer all lines found in the
specified range.

The printer should be initialized (with FORMS) before you
execute this command.

Radio fhaek

PAGE 7 - 11

TRS-80 MODEL I/III BASIC BEDIT

TRS-80™
Sample
Commands Notes
Hi:* Lists all lines to the printer.
H7020 Lists line 7020 to the printer.
H672:800 Lists all lines found in the range 672 to

800.

I start-line, increment
Starts the insert mode.

start-line is a line-reference telling the editor where to begin
inserting into the text. If omitted, the current line
is used.

sincrement is a number telling the editor how to compute
successive line numbers. If omitted, the current increment
is used.

If start-line is already in use, the editor will start with the
next line number {start-~line + increment).

Special Keys in the Insert Mode
- Advances the cursor to the next eight-column
boundary (8, 16, 24, ...).

shift <~ Erases the line and starts over.
<= Backspaces the cursor and erases the character.
<ENTER> Marks the end of the current line. The editor will

store the current line and start a new one, using
increment to generate the next line number.

CAUTION: This does NOT renumber your line references! See N
command.

Sample
Commands Notes
I Start inserting at current line number,

Radio fhaek

PAGE 7 -~ 12

TRS-80 MODEL I/III BASIC BEDIT

TRS-80™

using current increment.

1,1 Start inserting at current line number,
using 1 as an increment. If current line
number is in use, start with current line
plus 1.

145,2 Start inserting at line 45 with an
increment of 2. If line 45 is in use;
start with line 47.

1100 Start inserting at line 100, using the
current increment. If line 100 is in
use, start with 100 plus increment.

L filespec

Loads a source file from disk. If there is already text in RAM,
the editor will ask whether you want to chain the new text onto
the end of the old, or clear out the old first.

filespec is a TRSDOS file specification for a VLR text file. The
file may have been created by this BASIC editor or by
another means. However, it must be in the BASIC source file
format., (See Source File Format.)

Note: If you chain one file onto the end of another, the line
numbers for the combined file will start at the previocus

first-line and will be incremented by the current increment.

Sample

Commands Notes

I, DEMO/BAS:1 Load DEMO/BAS from drive 1.
L XDATA Load XDATA

M

Prints the number of characters in the source text {(excliuding
the editor's line numbers) and the amount of memory free for
text storage.

Sample

Command Notes

M A typical response in a 48K system
might look like this:
00121- TEXT

39222~ MEMORY

Radie fhaek

PAGE 7 -~ 13

TRS-80 MODEL I/III BASIC BEDIT

TRS-80™

Meaning vou have 121 bytes of text, and
39222 free bytes of memory available.

N start-line,increment
Renumbers the entire text.

Note: Do not use the renumber command inside your program
unless you are not concerned wth line references (GOTO,
IF...THEN ..., GOSUB, etc.). To renumber your program properly,
use the Compiler BASIC RENUMBER command.

start~line becomes the lowest line number when the text is
renumbered. If start-line is omitted, the current line
number is used.

increment is used in computing successive line numbers. If
omitted, the current increment is used.

After renumbering, the current line is set to the highest line
number in the renumbered text.

Sample
Commands Notes
N Renumbered text will start with current

line; successive lines computed with
current increment.

N100 Renumbered text will start with line 100;
successive lines computed with the
current value of increment.

N100, 25 As above; line numbers at increments
of 25,

N,100 Renumbered text will start with current
line number; line numbers at increments
of 1060.

P line-range

Prints the specified lines to the display. If line-range is
omitted, 14 lines starting at the current line are displaved.

Radio fhaek

PAGE 7 - 14

TRS-80 MODEL I/III BASIC BEDIT

TRS-80™
Sample
Commands Notes
P Prints 14 lines starting at current
line,
P233 Prints line 233.
P. Prints the current line.
P* Prints the last line.
P140:615 Prints the lines within the specified

range. Lines 140 and 615 don't have to
be existing line numbers.

Q

Terminates session and returns to TRSDOS. The source text is
not written to disk.

R line-~reference, increment

Replaces contents of the specified line and continues in insert
mode., If line-reference is omitted, the current line is used.
If increment is omitted, the current increment is used.

The R command is equivalent to the D (delete) command followed
by the I (insert) command. When you enter the command, the
editor deletes the specified line and puts you into the insert
mode, starting with the line just deleted.

After you press <ENTER>, the editor will continue in the insert
mode, prompting you to enter the text of the next line number.
To escape from the insert mode, press <BREAK>.

Sample
Commands Notes
R125,3 Prompts you to insert replacement

text for line 125. Subsequent line
numbers will be generated with an
increment of 3.

R* Prompts you to insert replacement
text for the highest numbered line in
the text area; subsequent lines will
be generated using the current increment.

Radie fhaek

PAGE 7 - 15

TRS-80 MODEL I/III BASIC BEDIT
TRS-80™

T

Displays the top line (first line in the text area).

W filespec
Writes the text in RAM into the specified file.

filespec is a TRSDOS file specification. If file already
exists, its previous contents will be lost.

Sample

Commands Notes

W DEMO/BAS:1 Save DEMO/BAS onto drive 1.

W XDATA Save XDATA/BAS onto first available drive.

X/search-string/replacement-string/n

This command is exactly like the C (Change) command, except that
it displays the line to be changed and queries you (Change?)
each time it finds search-string. If you answer Y, the line
will be changed; any other answer leaves the line unchanged. 1In
either case, the process continues until all first occurrences
have been found.

Sample
Command Notes
X/MISPELING/MSP/*

Changes the first occurrence of
"MISPELING" to "MSP"

in every line that contains it, but asks
you to confirm each change before it

is made.

Radio Sfhaek

PAGE 7 - 16

TRS-80 MODEL I and MODEL III

REBASIC
PROGRAMMER ‘S INFORMATION
SECTION

JANUARY 16, 1981

COPYRIGHT NOTICES

TRS5-80 MODEL 1 and MODEL I11 RSBASIC PROGRAMMER 'S
INFORMATION SECTION

(C» 1981 by Ryan-McFarland Corporation; Licensed to Tandy
Corporation. All rtights reserved.

Reproduction or wuse, without express permission, of
editorial or pictorial content in any manner is prohibited
While every precavtion has been taken in the preparation of
this manual, the publisher assumes no responsibility for
erToTs or omissions. Meither is any 1liability assumed for
damages resulting from the use of the information contained
herein.

TABLE OF CONTENTS

Fage

I. INTRODUCTION. 8/1
II. OVERVIEW. 8/2
III. THE FULL DEVELDPMENT BYSTEM. 8/3
The Editor...... 8/3

The Compiler. 8/4

The Runtime. 8/%

Program Debug. 8/5

IV, THE STAND-ALONE RUNTIME SYSTEM. 877
STAND-ALONE DEBUG. 8/7
STAND-ALONE DREBUG COMMANDS. 8/8
BREAKPOINT Command. 8/8
DISPLAY Command. 8/9
DUMP Command. 879
GO Command. 8/9
SYSTEM Command. 8/10

V. MEMORY USAGE AND DATA STORAGE. 8711
Obgject Program Structure. 8/11
Storage of Integers. g/12
Storage of Decimals. 8/13

Storage of Numeric Arrays............. 8/14

Storage of Btrings. 8/146

Storage of String Arrays.............. B/18

Stack Usage. 8/20

VI, ASBEMBLY LANGUAGE SUBPROGRAMS. B8/21
Betup. e 8/21
Parameter Passing..................... 8/21
Returning to RSBASIC. 8/22

VII. THE BASBIC FILE SYSTEM aND FILE FORMATES. .. 8/23
System Bupported Files................ 8/23

REBASIC File Formats. B/26

RSBASIC, RSCOBOL., and ISAM Files. g8/27

I. INTRODUCTION

This document contains all of the information required ¢to
compile, run and debug RSBASIC language programs on the
Radio Shack TR5-80 Model I and Model III Microcomputers
under the TRSDOS Operating System.

It assumes the reader is familiar with the REBASIC Language.
the general operation of the TRE-80 Model I and Model III
Microcomputers, and the TRSDOS Operating System. The reader
is specifically referred to:

TRS-B0O Model I and Model III RSBASIC Language Manuals
TRE-80 Model I and Model III Operation Manuals

TRS-B0 Model I and Model III Disk Operating System
Reference Manvals

This guide 1is organized swuch that each chapter fully
describes a particular operational procedure. While the
experienced user need only refer to the appropriate chapter.
it is recommended that the first—-time vser read the complete
guide prior to operation of the RBBASIC system.

II. OVERVIEW

REBASBIC operates on THE TRS Model I and Model III Micro
computers under the TRSDOS Uperating Sustem. It is actually
two separate systems.

The +full development system is used for editing, compiling.
and checking out RSBASIC programs. The system in use must be
equipped with 48K bytes of memory €o run the full
development system.

The Stand-Alone Runtime <system (RUNBASIC) is wused for
execution of previously compiled programs and execution and
checkout of previously compiled programs whose resultant
ob ject programs require move memory than is available vunder
the #full development system. RUNBASIC will run on a TRS
Model I or Model II] with as little as 3iK*bytes of memory.

*¥0nm a 32K svstems COMPILER BASIC will consume most of the
memary. Onlvy about 1500 bvtez will he left for the user.

PAGE 8 - 2

III. THE FULL DEVELOPMENT SYSTEM

The Full Development System consists of four modules: the
Resident which always resides in memory. and three overlays:

1) The Editor,
2) The Compiler, and
3) The Runtime.

The Full Development System 1is entered via the REBASIC
command. The format is as follows:

RSBASIC [filespecl) [{T=nnnn,S=xxxx>1]

where:

filespec is an optional RSBBASIC source or object file which
is to be run by the RSBASIC system. If filespec is omitted.
the system prompts for input with an asterisk (’'#7).

T=nnnn indicates the highest memory address accessible to
the RSBASIC system. The address nnnn is in hexadecimal

notation.

S=xxxx indicates the system should reserve hexadecimal xxxx
bytes for stack space. The default is &CO. This number
should not be less than %20.

To exit the system, the SYSTEM command with no parameters is
used. This will return control to the TRSDOS operating

system.

The Editor

The Editor overlay is loaded by the Resident when editing
functions are required.

The Editor allows manipulation of source programs. It is

ysed to build the source programs which will be compiled and
executed by the other parts of the system.

PAGE 8 - 3

The Compiler

The Compiler is the heart of the REBASIC System. It compiles
the RSBABIC source statements infto an interpretive object
format which will be execuited by the RSBASIC Runtime.
Compilation proceeds from +the beginning to the end of the
program with any error information noted along the way.

There are four methods of involking the Compiler. One 1is to
issue the COMPILE command, specifying an input source fils
and an output object file. This method compiles the source
program into object code one statement at a time and outputs
the object code to the specified output Ffile. The COMPILE
command also allows the options of producing & listing of
the source along with a cross—reference and memory—map. This
listing <can optionally be routed to the printer or, in a
future release, to a disk file.

COLMPILEIL, Jfilespec, filespec [{LIST,MAP,PRT, XREF}]

The second method of invoking the compiler is to issue the
RUN command with no parameters. This allows compilation and
execution of the RBBASIC program currently in memory.

The third method is to issue the RUN command giving the
pptional #filespec (RUN filespec). If ‘Ffilespec’ specifies a

source program, memory is cleaved, the source program is
read into memory. compiled, and executed. The ‘filespec’ may
also specify an osbhgject program, in which case the

compilation step is unnecessary.

The fourth method of invoking the compiler is to issue the
STEP command. I+ necessary., this will compile the RSBASIC
program in memory and allow the wuser to execute the
resultant object code. The line number of the next line %o
be executed will be printed on the screen.

Control returns to the command mode following completion of
a compilation, execution, or STEP.

PAGE 8 - 4

The Runtime

The Runtime overlay is loaded to execute the RSBABIC object
code in memory. It processes until one of the following
OCCUTS!

1) a wuser—defined breakpoint is reached, in which case a
message is printed on the screen and control returns to
the command mode.

2} when executing a STEP command, the start of the object
code for the next (or the specified number) source line
is reached, in which case @ message is printed on the
screen and control returns fo the command mode.

3) a nonfatal error is detected, in which case an error
message 1is printed on the screen and execution is
continyed.

4y a tatal error 1is detected. in which case an error
message 1is printed on the screen, all open files are
closed, and control returns to the command mode.

53 the program executes a STOP or END statement or executes
the last statement of a program, in which <case a stop
message 1is printed on the screen, all open files are
closed and contrel returns to the command mode

Program Debuqg

In order to enhance program development, & debug facility is
provided. Debug is initiated in one of three ways:

1) The STEP command.
STEP

2) The BREAK command,
BREAK line number., line number.,. ..

3) The TRACE command.
TRACE ON/OFF

The STEP command allows the user to execute his program one
or more lines at & time. After each step, control returns to
the c¢ommand mode to allow the wuser to input new debug
commands. Debug is complete when either the STOP or END
statements have been reached or the GO command iz issued.

PAGE 8 - 5

The BREAK command is wused to set breakpoints at various
lines within the program. Execution is initiated with the GO
command and proceeds until either a breakpoint is vreached or
the STOP or END statements have been executed. Contrel is
again returned fto the command mode.

The TRACE command is wvsed to produce a trace line of each
line number executed. TRACE may be used in conjunction with
nther debug commands. The format of the TRACE line is

LINE nnnn

where nnnn is the line number of the next line to be
executed.

When control has returned to the command mode., the remaining
debug command may be used. the DISPLAY command:

DILSPLAY] [{routine namel; Jvariable, [Lroutine nameld; lvariable. ..

where:
routine name describes the routine where the variabls

resides. Complete descriptions of all debug commands may be
found in the RSBASIC Language Manual.

PAGE 8 - 6

Iv. THE STAND-ALONE RUNTIME SYSTEM

The Btand—-Alone Runtime System is a single module system
which interprets object code from previously compiled
RSBASIC source programs. It is invoked with the RUNBASIC
command and processes in much the same manner as the Full
Development System Runtime. The Btand—-Alone Runtime System
debugging facility, however, differs in that only
breakpoints may be set; there is no STEP facility. At a
breakpoint data items may be displayed to checkpoint program
accuracy.

Format of the RUNBASIC command:
RUNBASIC filespec [A{D.B, T=xxxx, S=nnnlk
where:

D causes the system €to load and execute with
interactive debug.

T = xxxx reserves memory above hexadecimal address
xxxx for user subroutines. (default is TOP)

B enables the BREAK key for halting execution
(default is disabled)}

S = nann reserves hexadecimal nnnn bytes for the
runtime stack. (default is %CO}

The options may appear in any order.

STAND-ALONE DEBUG

The commands to the Stand-Alone Debug module are much the
same as the corresponding commands to the Full Development
Bystem. Since the symbol table is not available %o the debug
module, locations corresponding to the listing generated by
the compiler are used %to denofte both line numbers in the
BREAK command and variables in the DISPLAY command.

Real and integer scalars in the common area are denoted by a
single gquote after ¢the location just as they are on the
Symbolic Memory Map;: 1i.e., Gia’ is livocation O1& in the
common area. An asterisk before the location is used %o
denote formal parameters to subroutines; 1.8, ., #0347 is used
to display the current contents of the formal parameter at
location O0347. NMNote that & leading O is needed on the
location when the lesading hexadecimal digit is A through F
to be sure the debug module does not mistake it for a
subprogram name.

PAGE 8 -~ 7

If the D option is chosen, debug will prompt for a command
under the following circumstances:

1} atter the program to be vun is loaded into memovry., but
before execution begins.

2) after a message is printed on the screen detailing the
filespec specified in a CHAIN statement and where the
statement occurred.

3) atter loading the program specified in a CHAIN
statement, but before execution begins.

4} atter any fatal error message is printed on the screen.
5) after normal termination of the program.
At any of the above points, any debug command may be
entered, however, at points 4) and 35): the O command and

the 8Y command without a parameter will both cause a return
to the TRESDOS READY mode.

STAND~-ALONE DEBUG COMMANDS

All commands to the debugger are two characters onluy;
anything else results in a COMMAND SYNTAX ERROR.

BREAKPODINT Command BR <address>,. ..

The breakpoint command will cause execution of the RSBASIC
program to be suspended when the instructon at <address® is
reached,

If not qualified, <address> vefers to the “current” program
or subprogram; that is, the program in which execution was
suspended by the breakpoint. Before execution begins., the
current program is defined as the main program.

A semicolon before the <addressl forces it to be relative to
the main program, while a subroutine name before the
semicolon forces the <address> to be relative to that

subroutine.

The breakpoint command only (not +followed by <Caddress>)
clears all breakpoints previously set.

PAGE 8 - 8

DISPLAY Command DI <address>, ...

The displey command formats <¢the current contents of 2
variable according to its type and prints it. The <Laddress
is %thet location corvesponding %o the desired variable on
the Symbolic Memory Map generated by the compiler.

An ungualified <addressl defaults to that program in which
execution was suspended. or the main program 1if execution
has not begun. A semicolon before the address> forces it to
be relative to the main program; while & subroutine name
before the semicolon forces the Jaddress> to be relative to
that subroutine.

Type information is conveyed by the characters "4" and "g¥
appended to <Caddresslr. The &type defaults to real. An array
element may be displayed by appending the subscripts in
parenthesis to Caddress>. Subscripts must be integer
constants.

For Example:
DI SUBL: #0304%(1, 1), O306%

The above command will display the current contents of the
string array element in the first row and first column of
the two-dimensional string array which was passed as the
formal parameter at location 0304 to subroutine 8UB1L,
followed by the integer wariable at location 0306 in the
maln program.

DUMP Command DU <address 1>[-<address 2>1]

The dump command is wsed to dump memory as hexadecimal
bytes. The gualification of <address 1> is the same as for
the breakpoint command.

g0 Command GO

The go command either begins exscution or vesumes afier a
breakpoint is reached.

PAGE 8 - 9

SYSTEM Command 8Y ["TRSDOS System Command”]

A= -

The system command passes a string to TREDODE as if the
string were entered in response to the TRSDOS READY prompt.
Any parameters to the passed command are ignored. Control
does not return to RSBASIC.

PAGE 8 - 10

V. MEMORY USAGE AND DATA STORAGE

Ob ject Program Structure

ROBASIC programs use two distinct storage areas: PSECT for
storage of instructions, constants, addresses, and dope
{(array and string descriptors?), and DSECT for storage of all
variable data. The system will allocate both these sections
within its controlled memory area as follows:

H COMMON Storage

i SUBROUTINE N
H DSECT Storage

(I+ any?’ H
e e o e e o e e e e e e +
H MAIN ROUTINE ;
: PSECT Storage H
e e i e e o e e e +
i MAIN ROUTINE H
H DEECT Storage :
e o e e s o e e o e o +
o e e e S e o e e e o s +
: SUBRDUTINE N H
H PSECT Storage -
e o e o e e e o e +

PAGE 8 -~ 11

Storage of Integersi

Integers are stored in 16-BIT two’s complement Fform. The
least significant byte 1is stored in the first memory byte
and the most significant in fthe second. The examples below
illustrate this storage format.

Storage of +5% at hex address 00AL:

00A1l i
coaz2 i

L S mprIp—,

Storage of -5 at hex address 0073

o 2apt Soim ks Sotas S4sn Sven 99O SR St S e S AR S P ST b S

0073 H
0074 :

- o saine St 40300 ot ARCK Jat Skt S patss S €S Puoed SOt ST S S

{(-5={COMPLEMENT OF +35)+1)

The numbers which may be thus represented are the integers
in the range

-32768 TO +32747

This, therefore, defines +the range of integers in the
RSBASIC system.

#For movre information on the storage of integers in two’s
complement form., see "TRS8BO Assembly Language Programming”®
by Bill Barden, Jr.., Radio Shack Catalog Number 62-2006.

PAGE 8 - 12

Storage of Decimals

Decimals are stored in 8 bytes with the first byte
containing the sign and exponent and the rTemaining 7 bytes
containing 14 binary coded decimal digits representing the
mantissa.

The first bit of the first byte is the sign. A O bit denotes
& positive number and 1 bit denntes a negative number. The
other 7 bits represent a biased binary exponent of ten. The
exponent is biased by %40. That is, an exponent of &40 is
equivalent to O.

The mantissa is normalized to the left. This means the first
digit of the mantissa is zero only if the number is zero.
The exponent is adjusted accordingly. An assumed decimal
point is to the left of the mantissa.

The examples below illustrate this storage format.

Storage of 5. & at hex address O0AL:

S e M . ot T . 23 S o A T S oY . SO P WS B S A TSRS S SO R G Sh4e8 VORI VT TR S VS0 WV S S . Yo S TR g RS T S . T o

00A1l 1 41 1 561 001001001001 001 001

Dot Sk e e S A AT WD S04 O T OB 2] D ST S U GRS S AR e S M S44E S40S SAe BOS M AN i 5 T S S O mne o, S . A S A S S S Wl e A1

L S P —

B e Rl e L Ry g ——

v o 2oy Sape et S0 Tl S5 S S S W S0 . M S AL e it S 0 AR A S SR Lol . A B B D SN SO SN R S e Bt Y S SO A AN A . B S S

s e i e Seman A2 ek S AR MG AN NS PN (OSSP AR M i S0 e i St e At Al HALIR ARt MMt RO HOSH Sy e SO St M AP S S B S4MS SLACE MRS AL WS O SRS S SO bt

This is equivalent to
L 2348714 X 10#%(75-64)
or . 236RB714 X 10#%(11)

The numbers which may be thus represented are the real
numbers in the range

~0. 999999999999539%10-+63 to —0. 99999999999999+% 10" ~&4
and +0. 99999999999999%10"-64 to +0. 99999999999999%10~+463

PAGE 8 - 13

Storage of Numeric Arrvays

Arrays of numbers are stored in memory by row with esach
number occupying two bytes for integer and eight bytes for
decimal. The storage of single and double dimensioned arrays
iz illustrated in the two diagrams below:

Single dimension integer array A4 with 3 members
starting at hex address 0132

0132 —————m———-
0133 | A%(O)
0134 ~—m————mm—
0135 | A%(1) !
0136 =m——m—w———
0137 | A%(2) i

Double dimensioned integer array BZ with 3 rows (first
subscript) and 2 columns (second subscript) starting at
fiex address 3EB7:

3EB7 —mm——————me
3EBS ! B%(0,0) !
3EBY ——mm—mmmmee
3EBA ! B%(O, 1) !
3EBB ——m——mm—m——
3EBC ! B%(1,0) !
3EBD ~—em—meememee
3EBE ! B%(1,1) !
3EBF —m—m—mmmm e
3ECO ! B%(2,0) !
3ECL —mm——mmm—ee
3EC2 ! BU(2, 1) !

As can be seen from the examples above:, the address of an
element in a single dimensioned array is

ARRAY BASE + S#(SUBSCRIPT)

while the address of an element of a double dimensioned
arvay element is

ARRAY BASE+S#((MAX BUBSCRIPTZ+1)#8UBSCRIPTI+SUBSCRIPT2)

PAGE 8 - 14

where S is either @ for integer or B for decimal. For
instance,

A%{(1) above would be:
0132+2%(1)=0134

B%(1,0) above would be:
SEB7+2% ((1+1)#i+0)=3EBB

The single dimensioned array can be thought of as a special
case of the double dimensioned array with a8 MAX SUBSCRIPTZ2
of -1 1f its subscript is treated as "SUBSCRIPT2". This
implies that in each subscript calculation, two constants
will be required — the ARRAY BASE and MAX SUBSCRIPTZ2. MAX
SUBSCRIPT! is also needed for subscript checking.

For each array in the RBBASIC system, these three constants
are stored in a memory block referved to as the array dope.
In the example below, the array dope for the two example
arrays 1is shown.

Array Dope for AZL and B% above
Dope begins at hex address 1A75

A% Dope 1A75 | 3 2 | A% Base
1476 {0 1t 1
1a77 1 0 2 | A% Max Subscriptl
1A78 1 O O |
1tA79 F F | A% Max Subscript
1A7A | F F |
1A7B 1 G O Array type (O=integer, i=real’
1H7C 1 O O not used
B4 Dope 147D | B 7 1 B% DBase
1A7E | 3 E i
147F | & 2 | B%Z Max Subscriptl
1a80 1 6 O
1481 1 O 1 BY% Mag Subscript2
1a82 1 G O |
N I ¢ I Type {(integer)
i 00 not used

PAGE 8 - 15

Storage of Strings

Strings are stored one ABCII character per byte. The current
length of the string in bytes is stored in a one-byte binary
field at the start of the string. The ¢xamples below show
how this works.

SHELLDY stored at hex address Q175

0175 P05 Current Length
0176 I & A
Q177 i OEY

~~~~~~~ Current Value
0178 HEES T
o179 A T
0174A R s R

. - o - oo - o

String Variable C%, Max Length=10
Starting at hex address 268A
Current value is "BASIC"

— . i o - 7oy

C% 26BA f 05 1 C% Current bLength

2688 ¢ "B 1

268C  f A" i

268D :":;:*: C$ Current Valvue
268E ¢ "I%

268F ;”:E:~:

2690 1 x ¢

2691 :__;-_:

2692 :~—;-—; C% Currently Unused
2693 ;m*;**:

2694 1 x i

Iy o v o — -

PAGE 8 -~ 16



Strings may be empty, i.e.., they may have a current length
of O, or they may have any length up to and including their
declared maximum. For each declared string, a total of HMAX
LENGTH+1 bytes is reserved for the storage of the string and
its current length.

During program operation, the MAX LENGTH of a string
variable will be required to control storing operations into
the string. Thus. for string variables. +two constants are
required during program operation —— the STRING ADDRESS as
well as the MAX LENGTH.

For each string variable, these constants are stored in a
memory block called the string dope. In the example below
string dope is shown for the example string C$.

String Dope for (4%
Dope begins at hex address 2BC1

R ————

Cs DOPE 2B(t1 i 8a C$ Address
2BC2 P26 |
2BC3 i 0A C% Max Length

LS S ——

PAGE 8 - 17




Storaqe of String Arrays

Strings may also be stored in single or double dimensioned
string arrays in which each element has the same maximum
length but may. of course, have wunique current wvalue .- and
length., The example below shows the storage of a single
dimensioned string arrvay A% having three elements each with
a maximum length of 5 characters:

String Array A%, Max Length=3 3 elements
Starting at hex address 7543

AS(0y="HELLO", AS{1)="FROM", AS(2)="RMC"

AS{0) T3A3 i 0 5 i A%{(0) Current Length
7504 e
75A5 ;*:;:_: A%(0) Current Valwue
7546 ;“:Z:”:
75A7 © oL
7548 i oo
AS(1}) 75A%9 :-5‘;”: A$(1) Current Length
75AA ?*:;:_:
73AB :_:;:“: A%(1) Current Value
75AC i g o
754D P
75AE :'*;*—: A$(1) Currently Unused
AB(2) TOAF :”;‘;‘: A$(2) Current Length
7580 R
7581 ;“:;:*: A%(2) Current Value
7582 :onen ot
75832 :~*;—~: A%(2) Currently Unused
75B4 :“*;—~?

PAGE 8 - 18



Item order of double dimensioned string arrays is the same
as for double dimensioned numeric arrays

The address of a single dimensioned string array element is
calcuvlated as follows:

STRING ARRAY BASE+{MAX LENGTH+1)#(SUBSCRIPT)
e.g., for AB{(1) above:
75A3+(5+1 )% (1)=75A9

The address of a double dimensioned string arvay element is
calculated as follows:

STRING ARRAY BASE+(MAX LENGTH+1)*
({MAX SUBSCRIPT2+1)#5UBSCRIPT1I+SUBSCRIFPT2))

Dope for string arrays is similar to dope for arrays of
numbers. The first two bytes are the STRING BASE, +followed
by two bytes for MAX SUBSCRIPTI., followed by two bytes for
MAX SUBSCRIPTZ2Z (-1 if single dimensioned), followed by a
one—byte array type (02 for stringl), followed by a one-byte
MAX LENGTH.

In the example below, string dope is shown for the example
single dimensioned string array As$.

String Dope for A%
Dope begins at hex address 2ZBC4

A% Dope 2BC4 i A3 A% Address
: 2BCS i 7% i
2BCé HE ¢ = A% Max Subscript 1
2BC7 i 00
2BCH i FF 4 A% Max Subscript 2
2BC? ¢ FF &
o2 Arvay Type
i 0% A% Max Length

s o e b b s

PAGE 8 - 19




Stack Usage

An RSBASIC program wvses the stack for storing veturn
addresses and the state of subroutines

Each GOSUB and function call {(DEF funchtion) uses two bytes
Each CaALL %to an REBASIC external subroutine wses 10 bytes.
The system uvses about 32 bytes for internal storags.

To calculate the expected stack size, estimate the maximum
number of nested gosubs, function calls, and subroutines
that could occur in & program. The stack size should be
2% (number of nested gosubs and function callsr + 10#%{number
of nested subroutines) + 32

For example, & program which could nest to & depth of 80
gosubs would reguire a stack size of %CO bytes

The system checks for stack overflow and for RETURN's
without @ matching GOSUB at execution., The size of the stack
iz determined by the © option in both RUNBASBIC and RESBASIC.
The default is %CO bytes.

PAGE 8 - 20



VI. ASSEMBLY LANGUAGE SUBPROGRAMS

Assembly language _subprograms may be called by RSBASIC .
programs. However, the user is responsible for loading them

by use of the TRSDOS LOAD command into memory locations

which do not conflict with the RSBASIC system and for

protecting them from overwrite by the RSBASIC system via the

T (top of memory? parameter on the RSBASIC and RUNBASIC

commands.

Setup

Calling an assembly languvage subprogram from an RSBASIC
program requires the same statement format as a normal
RBBASIC subprogram call. However, since the RSBASIC system
will not know where the user’s assembly language program is
loaded, this information must be supplied wvia the EXT
statement in the format;

In EXT subname = XXXX,...
where:
subname is the subprogram’s name as used in CALL ‘s of

the subprogram and XXXX is the address where it has
been, or will be, loaded.

Parameter Passing

Upon entry to the wuser’s assembly language subprogram
information from the REBBASIC system is passed as follows:

{(GP} ——-2 the return address#
BC —-—2> the calling routines parameter list (if any),

DE -—— a parameter decoding routine for use in retrieving
subroutine parameter addresses and types.

#Note: The Runtime requires that information currently on
the stack other than the return address must not be altered
and must remain in its relative position.

PAGE 8 - 21



In order to pick wp any parameter addresses, the routine
referenced in DE must be ‘called’. Bince this routine has
saved all pertinent parameter information, it requires no
parameters; however, it returns the following:

B = argument type., O for integer
i for real
&2 for string

DE = argument address (for string scalars, this is the
address of the string dope, for
arrays. this is the address of
the array dope)

A = return code, O for argument returned
-1 for no more arguments

Care must be taken when passing parameters back to the

RSBASIC program to ensure +that their formats are correct
{(see Storage of Data section).

Reaturning to REBASIC

At completion of an assembly language subprogram. return is
made to the <c¢alling progrem by passing control to the
address which was pointed to by the stack pointer.

PAGE 8 - 22



VII. THE RSBASIC FILE SYSTEM AND FILE FORMATS

System Supported Files

Three types of files are supported in RSBASIC: sequential,
direct (random), and indexed sequential (ISAM).

Files are specified in the wuser’s program in a mannerk
consistent with the TRSDUOS filespec., of the form

filename/ext. password: d{(diskette name)
where:
‘filename’ is required.
‘7ext’ is an optional name—extension.

‘. password’ is an optional password. When omitted no
password checking is performed.

‘:d’ is an optional drive specification. When omitted
the system does an avtomatic search, starting with drive
.

“‘{diskette name)’ is optional. When omitted no disk name
checking is performed. ‘

Sequential Files

Sequential files are created by Runtime as either wvariable
length er fized length records, according to user
zpecification (i.e., if a LENGTH parameter is supplied 1in
the OPEN statement, the rtecords will be fixed length;
otherwise, they will be variable length) If the file exists
at DPEN time, the file type and record length are used as
defined by TRSDOS.

Sequential files do not allow DELETE or Update. The maximum
record length for sequential files is 2350 bytes.

Direct Files

Direct files are +fixed length record (FLR)} files. They
differ from standard TREDOS Direct files in that appended to
the front of each record is a two-byte record length. The
maximum tTecord length for direct files is 254 bytes.

PAGE 8 - 23



Indexed Files

Indexed (ISAM) +files may be referenced in either the
sequential or random mode. Each record in an indexed file is
uniquely identified by the value of the associated key. In
RB8BASBIC, the key need not be part of the data written in the
file. It is used as a roadmap in order ¢to retrieve the
record on which the data iz ztored.

The RSBASIC single—key ISAM structure is built on a TRE8DOS
direct file with 286~-byte physical recovrds. Internally, the
ISAM module uses 32-byte logical records called allocatable
units (AU’s).

There are four types of objects in an I54AM file:

1) Header (1 AU

2) Tree {each node = 16 AU’s)
3 Linked Lists

4) User data records

The file header starts at AU 1 (the first’. There 1is¢ only
one tree in which all key values are maintained. The header
contains a pointer to the key ftree’s root node. The  header
also contains pointers to the start of two free lists. These
two lists contain free directory (tree) nodes and free user
records. Directory nodes contain pointers which point to the
associated data record.

When a new object (node or data record! needs to be created,
an entry on one of the free lists is reused if one exists.
Otherwise, space is allocated at the current end of file.
Variable length data iz =stored in fimed lendith data records
to allow space to be recovered more easily.

PAGE 8 - 24



The physical format of the header, a node record, and a user
data record are as follows:

Header: header code word
# of AU's %o store header (1)
# of AU's to store dats record {(m}
head of free node list
number of free nodes
head 0% fres record list
number of free records
head of free duplicate block list (G}
number of free duplicate blocks (0
next free AU
flag word
# of keys (1}
key size
key offset (0O}
tree height
voot of index tree
next available stamp # (O}

Node: node count word
number of keys in this node
1eft pointer

PSPV E———

i data pointer
i key value
P right pointer

et g G s G St GRS S eeze SORTS ven Cuos TS

User Datas Record: byte count

Seime o S menn Renc e TR I s D SR 6.

e st Gty o, i A ot SO e Bt S

Inderxed records are ‘mappsd’ onto direct +#ile records of 256
bytes (standard TREDOE sector sizel regardisess of their
actual size,

PAGE 8 ~ 25



The formula shown below should approximize the number of 25é&
byte sectors that a given file will require on disk. The
actual number of granules is this number divided by 5.

#Sectors = 1 + INT(1 + R¥ INT((S + 33)/32)/8)
+ INT{(1 + 2R/INT(252/K + 8}
where: INT = Integer value

R Number of records in the file

H

it

8 Bize of largest recovrd (in bytes)
K = Bize of key field {(in bytes)

Example: 1000 records i file (R = 1000);

max record size is 190 bytes (8 = 190});
key is & bytes (K = 4&)
#Sectors: 1 + INT(I + 1000#INT((190 + 33)/32:/8)

+ INT(1 + 2#1000/INT(252/7(6 + 8))

= 1 + 751 + 112 = B&4

REBASIC File Formats

Within the system file structure RSBBASIC supports three
subfile systems which <can be mapped over any of the thres
system file formats:

i1} Free Format,
2) USING Format, and
3) Binary Format.

Free Format files are constructed ¢to resemble an REBASIC
program input stream with trailing zeros and blanks deleted
and items separated by commas. All items ave in ASCII
format, sp that an INPUT operation from such a file differs
from console input only in the fact that input comes from a
diskette file.

USING format fFfiles are in ASCII format: but items are not
separated by commas:; rather, they are set into a string
structure as dictated by the elements of the UBING string
specified when the file was written,

PAGE 8 - 26



Binary Format filegs. unlike %the others, are constructed in
internal formaet in the following method:

i} integers aevs output as two—byte binary numbers:
23 decimals are ouitput in fheir internal format with
trailing zeros ftruncated and with & leading one-byte

length count:

3 strings are oultput as 3 one-byte count Fallowed by their
ASCII representation minus frailing bilanks.

The whole vecord is then output with & one-byte record
length count in front.

REBABILC, RECOBOL. and 18aM Files

The format of the REBASIC indexed sequential {(I5AaM) file was
designed %to provide & method by which an REBASIC program and
an RECOBOL program may communicate, By adhering to a feuw
zimple vrvules, %the REBARIC programmer may suicessfully read.
write and update an I8AM file created by RBCOBOL. The ryules
are simple hut guite stringent for both RECOBDL and REBABIC.
i any of them are ignorsd, the date in the file may be
irretrievably lost.

1) The file must bhe gingle~key only
REBABIC langusge syntax only permits one key
2% The key must be writiten as part of the datas recorvrd

REBABIC IBAM format does not require this. but RBECOBOL
dogs.

2 The records must be Fizxed-Fformat ABCIT

RECOBOL has provision $or neither binary data nor
variable length vecords. The easigst way for an REBASIC
programmer  to  ensure this is with the PRINT UBING and
INPUT USING statements. Ths Image vsed is anslogous o
the RSCUBOL record descriptor.

I¥ the ROBASIC ISAM #ile is not to be accessed by an RECOBOL
sragram, the above rules do net apply and anyg of the RBBASIC
I/ statemaents may be emplovsd.

NMotice that in REBABIC the record is padded on the righnt
with blanks oar zevoces. as spproprists for %he recovrd type
{(ABCII ov Binarvy., Tespectivelyl.




Radio Shack - Tandy Corporation
Information Bulletin (3/22/64

o o 2 B > s st i

Subject: RunBasic for RSBASIC compiled programs.

How 1o format a 5-1/74 diskelis for RunBasic as a stand alone,

e ot o oo 47928 i st s S S e RN 8 S A R 2. O R D R - = = - e oy o s

1. Insert ‘Compiler Basic’ diskette in drive 0,

2. insert a Dlank diskette in drive 1

3. 'BACKUP! Source drive 0 to Destination Drive 1
4, Parform following sequence:

PURGE=:]1 {SY S}

# aster password? PASSWORD
RUNBASIC/CMD:T (Y/N/0) 7 N
CONVERT/CMD:A (Y/N/Q) ? H
AFERSYS/CHMD:L (Y/N/0Qy 2 ¥
LPC/CMD:L (Y/R/0) TN
RUNBASIC/OVL:T (Y/N/Q) 7 N
BEDIT/CMD:L (Y/R/ B 7 Y
RSBASIC/CMD:Y (Y/R/0 2 ¥
REBASIC/UIB:L (Y/N/OQY 2 ¥
RSBASIC/LIO:L (Y/H/Q) 7 ¥
RSBASIC/OLF:L(Y/N/Q) 2 Y
LIST/BAS:I (Y/N/Q) ¥ Y
SAMPLUESSTL (Y/R/0Y 2 Y
SAMPLE/OBIL (Y/N/GQY 2 Y
LIST/LST:Y (Y/H/0) 2 ¥
LIST/0Ba:l (Y/R/G 2 Y

f 5 Read
’g f{ 5%} 0«.? i‘:‘é’ yos.QQoéﬁbb&?IOOieocQﬁwﬁaOﬁii@339%3""0‘0!§%&‘*ﬁi§§0!9

3

. The procedure is completed, The diskette in drive 1 35 now ready for
Copying compiled RSBASIC programs onto it and can be used as a stand alone
disketis in drive 0,






Sequential reading of an ISAM file is possible in RSBASIC by
simply not specifying a KEY on the INPUT or READ statement.
The record input will be the one whose key is next in the
ABCII collating segquence. The wvalue of the KEY last read
will be assigned as the output of the KEY% function.

PAGE 8 - 28






CAT. NO.
=26-22049

Appendix

™

8 X ] TRS-80

CUSTOM MANUFACTURED IN USA BY RADIO SHACK, A DIVISION OF TANDY CORRP







ERROR MESSAGES AND RETURNS

Resident Ervor Messages

OVERFLOW

The system has sxhausted its available memory space.

If# overflow occurs during an APPEND, then none of the new
lines are appended. During the OLD. lines are included up to
the point where overflow occurred. During RENUMBER. all
iines are renumbered but references to line numbers are
updated only up to the point where overflow occurred.

SYNTAX

Improper command., vredundant information following command,
or improperly formed number or name.

PARAMETERS

Improper parameters have been included in +the RSBASIC
initiation command line.

PAGE A - 1



Editor T SEAGES

AUTO

Incorrect specification of the AUTO command.

CHANGE

Incorrect parameter specification in the CHANGE command.

DUPLICATE

Execution of the DUPLICATE command as specified would
overwrite an existing program line.

FILE FORMAT

An attempt was made to load a file which was not an object
file or was improperly formatted. May occur during a CHAIN
or LOAD.

LINE NUMBER

l.ine number specification or line number range is incorrect.

RENUMBER
A renumber operation (RENUMBER or APPEND) has been requested

which would generate a line number larger than 65535 or the
increment is zero.

SYNTAX

Improper command, redundant information following command,
or improperly formed number or name.

PAGE A - 2



iler T Mess 3

Compiler error messages, when appropriate, will print a ‘%°
character under the item in the line which prompted the
error. Error messages will be printed wunder the 1line in
which the error occurs.

COMMON SIZE

There exists a discrepancy in the COMMON SIZES between a
main and subprogram.

COUNT

Inconsistant number of arguments in a subprogram or function
call.

DOUBLE DEFINITION

Variable or array has already been declared in a SUB or DIM
statement and may not be declared again.

FILE FORMAT

An input file is not in the expected format.

FILE UNAVAILABLE —- TRSDOS ERROR XX

The #file specified for input or output cannot be accessed.
XX = TRSDOS error number.

LOGICAL EXPRESSION EXPECTED

An invalid specification of a logical expression has been
detected.

NUMERIC OR STRING EXPRESSION EXPECTED

A logical expression has been detected where a numeric or
string expression was syntactically expected. For example,

10 A=B OR C.

PAGE A -~ 3



OVERFLOW

Scalar or Array offsets have exceeded &FFFF.

ORDER
SUB must be the first active statement of a subpreogram. DEF.
COM, REAL, INTEGER and STRING must precede executable

statements: FOR must precede NEXT: SUB may be preceded only
by END. Or., FOR loops may be nested but must not overlap.

REFERENCE

Programs may not CALL themselves. String valued functions or
string expressions may not be uvsed as arguments in function
references or subroutine CALLS. Arrays may not appear in

function references, expressions, assignments, or relations
-—- only subroutine CALLS.

SIZE

Specification of a size limit, dimension, or value which
exceeds allowable storage capacity.

SUBPROGRAM

SUBEND may appear only at the end of a subprogram.

SYNTAX

Improperly formed expression or incorrect punctuation.
Redundant information at end of statement. Missing or
misspelled keyword such as TO, THEN, GOSUB, or GOTO.

Improperly formed name. Improperly formed string or numeric
constant.

TYPE

Strings and numbers may not be mixed in arithmetic
expressions. The type of a variable does not agree with its
use in the current context.

UNCLOSED FOR LOOPS
{.INE NUMBER nnnn WITH INDEX VARIABLE name

PAGE A - 4




UNDEF INED

A referenced function or variable has not been defined.

WARNING: TYPE

An invalid type has been specified in a function call.
Corrective action has been taken.

PAGE A - 5



Runtime Error messages

Runtime error messages are of the format:

message text ERROR LINE ##i##.
There are two types of Runtime errors: fatal and nonfatal.
Fatal erTors cause immediate cessation of execution;
nonfatal errors resume processing after a message of the
error has been displayed.

The number in parenthesis is the error number veturned by
the ERR function.

Fatal errors are:
{01) END OF FILE

Read attempt at end of file.

(02) I0 PARAMETER

The parameters of an I/0 statement are not recognized.

(03) COMPILATION

The program contains a compilation error.

(04) USING

A PRINTUSING or INPUTUSING statement has attempted to print
or idinput data wusing an Image which contains no format
specifications.

(05) INPUT SYNTAX

Invalid type of data received on an INPUT statement.
{0&) BUFFER BIZE

Record length for a file is less than zone size for standard
format print.

PAGE A - 6




(07) OUT OF DATA

an attempt was made to READ past the end of the DATA list

(0B} READ DATA TYPE

There is & %type discrepancy belween the wvariable dats
requested and that of the DATA list.

(09) UNDEFINED REFERENCE

& Tefsrence has besn made o 2N unknomn line number or
external routine.

(10) SUBSCRIPT

A subscript is out of rangse.

(11} ARGUMENTE
The number, %type, or value of arguments in an I/70 statemasnt

or subroutine c¢all does not maitch the corresponding fils
record or subroutine paremesier list.

{12} RETURMNM

A RETURN has bsen executed with no matching GLOBUB.

{13} OVERFLOW

The stack memory has been exhausted duye to excessive S0BUD
and/or CALL nesting.

(14) INVALID UNIT

&n  invalid or undefinegd unit number has specified in an I70
statement.

(13} UNIT NOT OPEN

an 170 statement refers to s uwunit which has not bsen cpened.



{ié6) UNIT OPEN

Attempted OPEN of an already open unit.

(17) FILE DCB SPACE EXHAUSTED

An attempt has been made to open more wunits than can be
accommodated at one time, due to either system or memory
limitations.

(18) INVALID FILESPEC

A filespec has been invalidly specified.

(19) KEY LENGTH

A key length less than one or greater than 127 has been
detected.

(22) BINARY READ

Input data does not match the READ list.

(23) BINARY WRITE

Output data does not +#it in a record.

(24) DELETED RECORD

Attempted READ of a deleted binary record.

(25) INVALID KEY

The ISAM processor has detected an illegal key value.

(26) KEY BOUNDARY

The ISAM processor has detected an invalid key boundary
within an existing ISAM file.

(27) RECORD POINTER

The I8AM processor has detected an invalid record pointer
within an existing ISAM file. .

PAGE A - g



(283 INVALID

The I8AM processor has detected an invalid index within an
existing ISAM file.

Nonfatal errors are:

{30} INPUT BIZE

& value greater than can be accomodated in the specified
variable has been input. The data item is set to the maximum
value and the specified 2ign is set to the mazrimum value and
the specified sign.

(31 DUTPUT 8IZE

Numeric value is too long for the Image specification. Field

ig filled with * No messege is printed unless the error is
produced by ERRDOR statement.

{32) NUMERIC DVERFLOW

Overflow during suipression evaluation. Sets value to maximun
value with algebraically correct sign and continues.

(33) NUMERIC UNDERFLOW

Undevflow during expression evaluation. The value is set £o
zero. QOccurs only on decimal arithmetic.

{34) DIVISION BY ZERO

The wvalue is sat to ithe maximum for the type.

(35) 8GR

Attempt +to Find the sguare Toot of a negative number. The
value returned is the square Toot of the absolute wvalue of
the input number.

PAGE A - 9



(3&) LOG

Attempt to +Find the LOG of zero or a negative number. For
zero the vesult is set to the maximum negative value. For a
negative number the result is set to the LOG of the absolute

value.

{37 POWER

A negative number isg raised to a nonintegral power or zero
raised to & negative power. Results are minus the power of
the abscolute value and maximum value, respectively.

PAGE A ~ 10




MODEL I/III COMPILER BASIC LIST AND SAMPLE PROGRAMS

TRS-80™
LIST and SAMPLE Programs
The Compiler BASIC package contains two programs -- LIST and
SAMPLE. They are in six disk files:
LIST/BAS SAMPLE/BAS
LIST/OBJ SAMPLE/OBJ
LIST/LST SAMPLE/LST*

LIST/BAS and SAMPLE/BAS are RSBASIC source files. LIST/0OBJ and
SAMPLE/OBJ are cobject files created with the COMPILE command.
LIST/LST and SAMPLE/LST* are listing files created with the LIST,
MAP, XREF, PRT='listing file' options of the COMPILE command,
{The instructions for using COMPILE are in Chapter 2 of this
manuall.

*Note: The Model I package does not contain SAMPLE/LST.

LIST Program

'I’ The LIST program is for printing any listing files created with
the PRT='listing file' option. To see how LIST works, you can
print the LIST/LST file. Under TRSDOS READY (or DOS READY), type
one of the following:

RUNBASIC LIST/OBJ <ENTER>
RSBASIC LIST/OBJ <ENTER>

&5
The Computer give you a FILE? prompt. Type:
LIST/LST <ENTER>

or any other listing file you want printed. The Computer will
then print it on both your screen and line printer.

NOTE: If you will not be using a line printer, you need to change
the LIST program. To do this, first locad RSBASIC. Then load the
RSBASIC source file of LIST by typing:

OLD LIST/BAS <ENTER>

Radio fhaek

PAGE A - 11



/11T COMPILER BASIC . LIST AND SAMPLE PROGRAMS
MODEL ¥ TRS-80™

Change line 140 and save the altered program by typing:

140 PRINT B$ : GOTO 130 <ENTER>
SAVE LIST/BAS <ENTER>

Then make a new object file and listing file of the altered

program by typing:

COMPILE LIST/BAS, LIST/OBJ (LIST,MAP,XREF,PRT=LIST/LST)<ENTER>

SAMPLE

The SAMPLE program simply demonstrates how the Compiler works.
You can run it using RUNBASIC or RSBASIC. Under TRSDOS READY (or
DOS READY), type one of the following:

RUNBASIC SAMPLE/OBJ <ENTER>
RSBASIC SAMPLE/OBJ <ENTER>

The Computer will ask you to input 20 characters. It will print
them on the screen as you input them. Then it will print the
numbers 1 through 100 followed by a series of X's.

Radio fhaek

PAGE A - 12




MODEL I/III COMPILER BASIC OPERATORS & SPECIAL SIGNS
TRS-80™

COMPILER BASIC
OPERATORS AND SPECIAL SIGNS

For information on these operators and special signs, see
Chapter 3, "BASIC Concepts".

SPECIAL SIGNS

E Power of 10
& Hexadecimal constant
OPERATORS
Numeric
+ Addition
- Subtraction
* Multiplication
/ Division
* % Exponentiation
! Integer Division
MOD Modulus Arithmetic
String
& Concatenation
Relational

= Equals
>< or <> Not equal to
>= or => Greater than or Equal
<= or =< Less than or Equal

> Greater than
< Less than
Logical
AND Logical AND
OR Logical OR

NOT Logical NOT
XOR Logical XOR

TYPE DECLATATION TAGS

String
Integer
Real

= a0 U

Radie fhaek

PAGE A - 13



I/111 COMPILER BASIC

COMMANDS

T

AND KEYWORDS

WORD

BBS
AND
APPEND
ASC
ATN
AUTO
BREAK
CALL
CHAIN
CHANGE
CHRS$
CLEAR
CLOSE
com
COMPILE
Ccos
CRT
CRTG
CRTIS
CRTR
CRTX
CRTY
CVD
CVI
DATA
DATES
DEF
DELETE
DELETE
DIG
DIM
DISPLAY

DUPLICATE

END

EQF

ERR
ERROR
EBEXP
EXp10
EXT
FOR/NEXT
GO

COMPILE

R BASIC
COMMANDS, STATEMENTES,

AND FUNCTIOHS

MEANING PAGE NO
Compute absolute value {[Function) 6-12
Calculate logical AND {(Function) 6-14
Append two programs (Command) 2-5
Get ASCII code (Function) 6-16
Compute arctangent {(Function) 6-18
Number lines automatically (Command) 2~7
Set or remove program breakpoints (Command) 2-9
Execute external subroutine {Statement) 6-20
Load and execute next program (Statement) 6-24
Change program lines {(Command) 2-10
Get character ASCII or control code (Function} 6-25
Clear all programs from memory (Command} 2~-12
Close disk file (Statement) 6-27
Allocate common variable area ({Statement) 6-28
Compile BASIC program {Command) 2-13
Compute cosine {Function) 6-30
Position cursor (Function) 6~32
Print in graphics mode {Function) 6~35
Read video display (Function) 6-39
Move cursor {Function) 6-42
Find cursor position (Function) 6-44
Find cursor position (Function) 6-44
Convert Integer to Real (Function) 6-46
Convert Real to Integer {Function) 6-48
Store program-data {(Statement) 6-50
Get todav's date {Function) 6-52
Define function (Statement) 6-54
Delete record from disk file {Statement) 6-57
Erase program lines from memory {(Command) 2-17
Compute number of numeric characters (Function) 6-58
Define string variables & arrays (Statement) 6-60
Display variable contents (Command) 2-18
Duplicate program statements {(Command) 2-19
Terminate program compilation (Statement) 6-65
Notify if end of file {Function) 6-67
Get error code (Function) 6-68
Simulate error (Statement) 6-69
Compute natural exponential (Function) 6-70
Compute base 10 exponential (Function) 6~-71
Define address of external program (Statement) 6-72
Establish program loop (Statement) 6-73
Start or continue program execution {Command) 2~20

Radie Shaek

PAGE A - 14




MODEL I/III COMPILER BASIC COMMANDS AND KEYWORDS

TRS-80™
GOSUB Go to specified subroutine (Statement) 6-76
GOTO Go to specified line number (Statement) 6-78
HEXS Compute hexadecimal value (Function) 6-79
HVL Convert hexadecimal string (Function) 5-81
IF... Test conditional expression (Statement) 6-83
THEN...
ELSE
INKEYS$ Get keyboard character if available (Function) 6-86
INPUT Input data (Statement) 6-87
INPUT Input data from disk file (Statement) 6-92
from a
disk file
INPUT Input formatted data (Statement) 6-94
USING
INPUT Input formatted data from a 6-99
USING disk file (Statement)
from a
disk file
INPUTS Input a character string (Function) 6-101
INT Convert to integer value (Function) 6-103
INTEGER Define variables as integers (Statement) 6-104
KILL Delete file from disk (Command) 2-21
KILL Kill disk file (Statement) 6-106
LEN Get length of string (Function) 6-107
LINE Input a line of Data (Statement) 6-108
INPUT
LINE Input line from a disk file (Statement) 6-110
INPUT ’
from a
disk file
LIST Display program lines (Command) 2-22
LOAD Load compiled BASIC programs (Command) 2-24
LOG Compute natural logarithm (Function) - 6-112
LOG10 Compute base 10 logarithm (Function) 6-113
LPRINT Print on line printer (Statement) 6-114
LPRINT Print using format on line printer (Statement) 6-116
USING
MERGE Merge disk program with resident 2-25

program {(Command)
NEW Erase BASIC program from memory {(Command) 2-27
OLD Load BASIC source program (Command) 2-28
ON Enable a <BREAK> handling routine (Statement) 6-118
BREAK
GOTO
ON Set up error-trapping routine (Statement) 6-120
ERROR
GOTO
ON... Test and branch to subroutine (Statement) 6-122
GOSUB
®
Radio fhaek

PAGE A - 15



MODEL I/III COMPILER BASIC

TRS-80™

COMMANDS AND KEYWORDS

ON...
GOTO
OPEN
OR
POS
PRINT
PRINT
to a

disk file

PRINT
USING
PRINT
USING
to a

disk file
RANDOMIZE

READ
READ
from a

disk file

REAL
REM

RENUMBER

RESET
BREAK
RESET
ERROR
RESET
GOSUB
RESTORE
RESUME
RETURN
RND
RUN
SAVE
SEGS
SGN

SIN
SIZE
SOR
STEP
STOP
STRS
STRING
STRINGS
SUB
SUBEND
SWAP
SYSTEM

Test and branch to different program
line (Statement)

Open disk file (Statement)

Calculate logical OR (Function)

Search for specified string (Function)
Print on video display (Statement)
Print to disk (Statement)

Print using format (Statement)

Print using format to disk file (Statement)

Reseed random number generator (Statement)
Get value from DATA Statement (Statement)
Read contents of disk file (Statement)

Define variables as real numbers (Statement)
Comment line (remarks) (Statement)
Renumber program (Command)
Disable the <BREAK> handling
routine (Statement)
Disable error handling (Statement)

Clear all returns (Statement)

Reset data pointer (Statement)

Terminate error trapping routine (Statement)
Return control to calling program (Statement)
Generate pseudorandom number (Function)
Execute program (Command)

Save BASIC source program on disk (Command)
Get substring (Function)

Get sign (Function)

Compute sine (Function)

Print used and unused memory (Command)
Compute square root (Function)

Execute portion of program (Command)

Stop program execution (Statement)

Convert to string representation (Function)
Define variables as strings (Statement)
Return string of characters (Function)

Name and define subprogram (Statement)

End subprogram (Statement)

Exchange values of variables (Statement)
Return to TRSDOS (Command)

6-123

6-125
6-127
6-129
6-131
6-135

6-137

6-142

6-144
6-146
6-148

6-150
6-152

2-29
6-153

6-154
6-156

6-158
6-160
6-162
6-163

2-30

2-31
6-165
6-166
6-168

2-33
6-170

2-34
6-172
6-173
6-176
6-178
6-179
6-181
6-182

2-35

Radio fhaek

PAGE A - 16



MODEL I/III COMPILER BASIC COMMANDS AND KEYWORDS

TRS-80™
SYSTEM Return to TRSDOS (Statement) 6-184
TAB Tab to position (Function) 6-185
TAN Compute tangent (Function) 6-186
TIMES Get the time (Function) 6-188
TRACE ON, Turn tracer on, off {(Command) 2-36
TRACE OFF
VAL Evaluate string (Function) 6-190
WRITE Write to disk {(Statement) 6-192
to a
disk file
XOR Calculate exclusive OR (PFunction) 6-194
®
Radie fhaek

PAGE A - 17



MODEL I/III COMPILER BASIC INDEX
TRS-80™
ABS tiiiiiocenacnaanan ceeee. 6-12 Data
Addition .......... R Y Conversion ............... 3-20
AND Operations ...occeccess eoe 3=22
Operator Gt e e o e e 3-31 Representing ..cceeececcess . 3-6
Function ......eeeeevenn.. 6-14 StOrage ..eccecscecsocss cee. 3-10
APPEND ....oovevnnnn.... cee. 2-5 Ways of Handling ..... ce.. 3-6
BSC teriiiieaannnn, .e... 6-1  Data Files
Assembly Language Explanation ....c.cecocoseces 4-1
Subprograms ......... 5-7, 8-21 StruCtUre .cceeosccsssocsce 8-11
ATN ........ e, 6-18  DATES ....... R AR - 6-32
AUTO it eeeuenconncononnennnn 2-7 DebuUg .ceeveccenonconns . 8-5, 8-7
BASIC Decimal Storage ..... eeecsss 8-13
Concepts ....c0... teescess 3-1 DEF ..ccceeccoscccn cecesscan 6-54
Keywords ...... et 6-1 DELETE
Also see RSBASIC FUNCtion .cceceococcccncns . 2-17
BEDIT ...... et 7-1 Statement .............. .. 6-57
Binary Input/Output Demonstration Program ...... A-11
OVEYXVIEW . veeeeon.. Gt e, 4-13 DIG (cecevassoocasnsca ceosssses 6—58
In Sequential Access File 4-24 DIM (ieecoaocons cevesess 3—-16, 6-60
In Direct Access File .... 4-34 Direct Access
In Indexed Access File ... 4-36 OVerview ...eieecsceccs oo 4-6
BREAK tivtvennonenennnnnnna, 2-9 Building the File ..... <.. 4-26
BREAKPOINT ....ovevvnnn.. ... 8-8 Using Binary Input/Output 4-34
CALL v veeevennennenns ceee.. 6=20 Using Formatted I/O ...... 4-26
CHAIN ..cvveerennnnnnn e 6-24 Using Stream Input/Output 4-32
Chaining Programs .......... 5-13 Diskettes
CHANGE ....... e eeteaeeaen. 2-10 File specification ..... .. 1-10
CHRS ..... e eeceae e 6-25 Inserting (photo) ........ 1-2
CLOSE +.vveennnnnn Ceeeeeeen . 6-27 Loading Programs ......... 1-13
COM tivrrrnnnnnnnnnns ceee... 6-28 Storing a Program ........ 1-11
Concatenation .......co0ve.. 3-27 Using Diskettes .......... 1-9
COS tevencnnnn ceesesccssas.. 6-30 Write Protect Notch ...... 1-9
CLEAR ...... e cesescesceanns 2-12 DISPLAY ..cccocsoscacss 2-18, 8-9
COMPILE .:.veeeoccancconcess . 2-13 Division ...ccccocccns eesees 3=25
Constants DUMP ..0cc- cescsssee ceecscsss 8-9
Definition ......... e s eo o 3-6 DUPLICATE ...... cesseseseses 2-19
Classifying ....coeeeeucn. 3-12 EAitOor ....cccecencacsss 71-1, 8-3
Compiler .....ccocesececeee. 8-4 END ..ccocoscecscanoccscs coes 6-65
Compiling a Program ........ 1-12 EOF .cccccoscosssssssasssns ees 6-67
CommMands .ceccoscoocacss 2-1; A-13 ERR .coeosscsccncs escesceses 6—68
CRT ..ccveccococccns cecasee. 0—32 FRROR .cccccocoosocscssscoss 0—69
CRTG .c.cvsccooccocccconscs ees 6=35 Error Messages ....... seeses A-1
CRTIS tieecceccsonn ceessaacss 6=39 EXP cccveccno cecescsssssscscs 0=T70
CRTR .ccccocansansae cesccoenss B6=42 EXP1O0 ...cocecoce ceesssssenss B8=T71
CRTX ..vcceceoccocon cesoso o e 6-44 EXT cocecooces ssescssessnense 6-72
CRTY ........ et 6-44 Exponents ...........cec.nn .. 3-13
CVD titeocennnonnnnonnans ... 6-46 Exponentiation ......... cees 3-26
CVI i iiiieencooncaconan coo. 6-48 Expressions
DATA .....ccoececcnnns csess. 6-50 Definition ........covvnen 3-4
SYyntax .csceccecccscosscccs

Radio fhaek

PAGE A - 18



MODEL I/III COMPILER BASIC

Fielding Records ........... 4-10
File Specifications ........ 1-10
Fixed Length Records ....... 4-3
FOR/NEXT '.eveuen. cssesssse 6=73
Formatted Input/Output
OvVerview ....ceovsccennces 4-12
In a Direct Acces File ... 4-26
In an Indexed Access File 4-36
In Sequential Access File 4-22
Full Development System .... 8-3
Functions

Definition ...cececse 3~-4, 3-34
List vveeencosnoacons ceeo-s A-13
SUMMAYY oo oooesenesos sesss 6-8
Syntax ....cccccccoons eeo. 337
GO cveeoeosasnos teneas . 2~20, 8-9
GOSUB .v.vecsoscsncoossoss cesse B-76
GOTO teecuomnonas creecoesceves 6=78
HEXS o.csvosssosnsansnse ceooes 6=79
Hexadecimal Numbers ..ces.- . 3-12
HYL c.vovssssoscsssnasas ee.. 6-81

IF...THEN...ELSE ....cc00..., 6-83
Indexed Access
OVEIrVIEeW ..cescesoncoes cees 4-7
Building the File ........ 4-36
Using Binary Input/Output 4-36
Using Formatted I/0 ...... 4-36
Using Stream Input/Output 4-36

INKEYS .evvunrss s eeceaens ees. 6~86
INPUT .csescoasnsoscss eeeeos 6—-87
INPUT from disk file 4-11, 6-92
INPUT USING ..o ecocsscas weeess H=94
INPUT USING from disk file 4-12,
6-99
INPUTS cvoevvenonocons ceeea. 6-101
INT oveeeevoconencennnsaass 6-103
INTEGER ....ouvnn. Sride..... 6-104
Integer Division ........... 3-26
Integers
Convarsion ...... we. 3-20, 3-21
Definition .cecessoces esse 3=10
STOYBUE .oevsesssosaocas .. 8-12
Keywords ..coocooessoscs R
RILL
Command ...coossc0s00 ceea. 2—21
Statement ......c0 hesecas 6-106
LEN ..covsvconossosas esessa B=107

..JENE XNPUT e & o ©# 9 2 & & & @& o O @ 6138
LINE INPUT from a dlSK file 6-110

TRS-80™

Radie Shaek

INDEX
LIST (ivceesescoansscossnsnnaes 222
LOAD .. iieeveaaccona csessees 2—24
LOG i eveenononcnssensnnssss . 6-112
LOGIO ..vvvveconacnns veases 6-113
Logical Operators .......... 3-30
Logical Tests ...... cnecsess 35
LPRINT .vcececcncsconans seo. 6-114
LPRINT USING ..csvovwees oo 6-116
Memory US80€ ..ceesvescsssans 8-11
MERGE ..:cocovscscnns cessess 225
Modulus Arithmetic ......... 3-26
Multiplication ..... cssasaee 3=25
NEW (.o conoaonscns csessonss 2=27
NOT .ottt encocosoosnnsnnans 3-31
Numeric
Arrays Storage ..:....:.... 8-14
Data ..uvvsnunscns ceseense 3-10
Relations .....evceeeonss . 3-29
OLD ..cc0ne cessessaessrsasss 2—28
ON BREAK GOTO ....voccesn .. 6-118
ON ERROR GOTO ...vceeccoons 6-120
ON..,.GOSUB ........ sesesess 06-122
ON...GOTO ..... cesessssneas 0=123
OPEN ....cvceoooncn cesessss 6-125
Operands .....oo00s.0 cesasess 3=22
Operators ....c.s¢. censenses 3=22
List ..oevvoen sesavesnsase A=12
Logical ..veeevsnsocansaes 3-30
NUMETLIiC .eveovoocecnsnoanse 3-23
Relational ...ceocsssssose - 3-28
String ...cceevass seossses 3=27
TesSt seseccooacconsas ceoses 328
OR
Function ..... csessesesss 6=127
OperatOr ...covvscnosssnss 3—31
Parameter Passing ..... ceees 8-21
Parentheses .....c00000232.. 3—32
POS .veovssvccos sesessssses 6-129
Precision ........ ssssssesss 3-10
PRINT ...ocecocccsa cesesass B5-131
PRINT to a disk file 4-11, 6-135
PRINT USING ...... sessasns e 6-137
Program Definition ...escooss 3-3
Programmers' Information .... 8-1
RANDOMIZE ....cc60 seseoess B—144
READ ..cevencons cesessssass 6—146
READ from disk file . 4~-13; 6-148
REAL . oeeesocssnoans . 3-16; 6-150

PAGE A - 19



MODEL I/III COMPILER BASIC

INDEX
TRS-80™
Real Numbers Statements
Conversion ........ 3-20; 3-21 Definition ....eeseoo.. ... 3-3
Defintion ......cec000... 3-10 LiSt eevceovsvosoancceseanss A-13
Records SUMMATY «oees.. ceseissees. 6-4
Definition .......ecenvun. 4-2 STEP vvveevenaens feeereaeee. 2-34
Fielding ................ 4-10 STOP & vvevnnneneeononnansns 6-172
Input/Output Methods ... 4-10 STRS vvvvvvunvenenenenenees 6=176
TYPES teieesnrnsososansasees 4-3 Stream Input/Output
Fixed Length .......... 4-3 OVEIVIOW teveveocnonnns .. 4-11
Variable Length ....... 4-3 In Sequential Access File 4-15
Ways of Access In Direct Acces File ... 4-32
Direct ................ 4-6 In Indexed Access File .. 4-36
Indexed ............... 4-7 STRING +esvveesnneess 3-14; 6-176
Sequential ............ 4-5 String
Relational operators ..... .. 3-28 Array Storage .......... . 8-18
Relational tests ...... eseees 3-5 Concatenation ........... 3-27
REM tvivvrennnnnernnnennnas 6-152 DALA vrvvvmnennnnnaeenaeas 3-11
RENUMBER . v vvvvvnnnnuennnns 2-29 RELALIONS & v vvsvnnneenn. 3-29
RESET BREAK ..o vveceoncones 6-153 StOrage ..ecceseasse 3—14; 8-~16
RESET ERROR .cvveesecnssenns 6-154 STRINGS +vveevesnenncoseesas =178
RESET GOSUB .......... cee.s 6-156 SUB vvveensnennsnecscennnss 6-179
RESTORE ........ e e 6-158 SUBEND .« ccesecvvososcnnsas .. 6=-181
RESUME ......ciciieneenesss 6=160 Subprograms
RETURN v vetevecernnasanes . 6-162 Calling Assembly
RND ..ccveeoncnns sevesersas 0~163 Language Programs 5-7; 8-21
RSBASIC How to Build ......... vee. 5-2
Loading ...... B Passing DAatad ...ceceeeea.. 5=5
Programming .............. 1-6 SEOTING vvevevenneneneenes 57
Debugging .....ccvvvvneese. 1-8 Subtraction .......ce0ne.... 3-24
See also, BASIC % SWAP tvivenvvncnnnnnnannans 6-182
RUN “ 5 » 8 % 08 8 0 P S e 2 s a0 s e s e . 2""30 Syntax s s s s e s e e e e e 2-'-2; 6"2
Runtime ....vsesevncsees. 8-5; 8-7 SYSTEM
SAVE ...... cesasenevsancanssas 2=31 Command ........... 2-35; 8-10
Saving a program ........... 1-11 Statement ......... ee... 6-184
SEGS ...inivvenn ceseecrenaes 6-165 10N - vev... B-185
Segmenting Programs ........ 5-1 TAN vt vveenennnennncnnnns ... 6-186
Sequential access Test Operators .......... ee. 3-28
Overview .......coveeveen. 4-5 Test Relations ....... ceeeen. 3-5
Building the file ....... 4-15 TIMES tuiieeeeccnnnneennnns . 6-188
Using Binary I/O ........ 4-24 TRACE ON . vvvevrnnnnnanns ... 2-36
Using Formatted I/O ..... 4-22 TRACE OFF .eevireecrennans .. 2-36
Using Stream I/0 ........ 4-15 Type Declaration Tag ..A-13; 3-17
SGN .L.0cvcosvcsnvscscsaasas 6=166 VAL v eenocesoscsossonncnnses 6=190
SIN ... ceooenases sesscsescnss B=168 Variable Length Records ..... 4-3
SIZE c.cosvosossasscsssocnsse 2~-33 Variables
Special Signs ...... sasesses A-12 Definition .....c0... 3~7; 3-8
SOR ....... cseessecsansaass 6-170 Classification .......... 3-14
Stack USAge ..viesnscnosoces 8-20 WRITE to Disk File .. 4-13; 6-192
Write Protect Notch ........ 1-9
XOR vvscwenessesasoss 3=31; 6-194

Radie fhaek

PAGE A - 20









	x000.pdf
	x001.pdf
	x002.pdf
	x003.pdf
	x004.pdf
	x005.pdf
	x006.pdf
	x007.pdf
	x008.pdf
	x009.pdf
	x010.pdf
	x011.pdf
	insert.pdf
	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf
	037.pdf
	038.pdf
	039.pdf
	040.pdf
	041.pdf
	042.pdf
	043.pdf
	044.pdf
	045.pdf
	046.pdf
	047.pdf
	048.pdf
	049.pdf
	050.pdf
	051.pdf
	052.pdf
	053.pdf
	054.pdf
	055.pdf
	056.pdf
	057.pdf
	058.pdf
	059.pdf
	060.pdf
	061.pdf
	062.pdf
	063.pdf
	064.pdf
	065.pdf
	066.pdf
	067.pdf
	068.pdf
	069.pdf
	070.pdf
	071.pdf
	072.pdf
	073.pdf
	074.pdf
	075.pdf
	076.pdf
	077.pdf
	078.pdf
	079.pdf
	080.pdf
	081.pdf
	082.pdf
	083.pdf
	084.pdf
	085.pdf
	086.pdf
	087.pdf
	088.pdf
	089.pdf
	090.pdf
	091.pdf
	092.pdf
	093.pdf
	094.pdf
	095.pdf
	096.pdf
	097.pdf
	098.pdf
	099.pdf
	100.pdf
	101.pdf
	102.pdf
	103.pdf
	104.pdf
	105.pdf
	106.pdf
	107.pdf
	108.pdf
	109.pdf
	110.pdf
	111.pdf
	112.pdf
	113.pdf
	114.pdf
	115.pdf
	116.pdf
	117.pdf
	118.pdf
	119.pdf
	120.pdf
	121.pdf
	122.pdf
	123.pdf
	124.pdf
	125.pdf
	126.pdf
	127.pdf
	128.pdf
	129.pdf
	130.pdf
	131.pdf
	132.pdf
	133.pdf
	134.pdf
	135.pdf
	136.pdf
	137.pdf
	138.pdf
	139.pdf
	140.pdf
	141.pdf
	142.pdf
	143.pdf
	144.pdf
	145.pdf
	146.pdf
	147.pdf
	148.pdf
	149.pdf
	150.pdf
	151.pdf
	152.pdf
	153.pdf
	154.pdf
	155.pdf
	156.pdf
	157.pdf
	158.pdf
	159.pdf
	160.pdf
	161.pdf
	162.pdf
	163.pdf
	164.pdf
	165.pdf
	166.pdf
	167.pdf
	168.pdf
	169.pdf
	170.pdf
	171.pdf
	172.pdf
	173.pdf
	174.pdf
	175.pdf
	176.pdf
	177.pdf
	178.pdf
	179.pdf
	180.pdf
	181.pdf
	182.pdf
	183.pdf
	184.pdf
	185.pdf
	186.pdf
	187.pdf
	188.pdf
	189.pdf
	190.pdf
	191.pdf
	192.pdf
	193.pdf
	194.pdf
	195.pdf
	196.pdf
	197.pdf
	198.pdf
	199.pdf
	200.pdf
	201.pdf
	202.pdf
	203.pdf
	204.pdf
	205.pdf
	206.pdf
	207.pdf
	208.pdf
	209.pdf
	210.pdf
	211.pdf
	212.pdf
	213.pdf
	214.pdf
	215.pdf
	216.pdf
	217.pdf
	218.pdf
	219.pdf
	220.pdf
	221.pdf
	222.pdf
	223.pdf
	224.pdf
	225.pdf
	226.pdf
	227.pdf
	228.pdf
	229.pdf
	230.pdf
	231.pdf
	232.pdf
	233.pdf
	234.pdf
	235.pdf
	236.pdf
	237.pdf
	238.pdf
	239.pdf
	240.pdf
	241.pdf
	242.pdf
	243.pdf
	244.pdf
	245.pdf
	246.pdf
	247.pdf
	248.pdf
	249.pdf
	250.pdf
	251.pdf
	252.pdf
	253.pdf
	254.pdf
	255.pdf
	256.pdf
	257.pdf
	258.pdf
	259.pdf
	260.pdf
	261.pdf
	262.pdf
	263.pdf
	264.pdf
	265.pdf
	266.pdf
	267.pdf
	268.pdf
	269.pdf
	270.pdf
	271.pdf
	272.pdf
	273.pdf
	274.pdf
	275.pdf
	276.pdf
	277.pdf
	278.pdf
	279.pdf
	280.pdf
	281.pdf
	282.pdf
	283.pdf
	284.pdf
	285.pdf
	286.pdf
	287.pdf
	288.pdf
	289.pdf
	290.pdf
	291.pdf
	292.pdf
	293.pdf
	294.pdf
	295.pdf
	296.pdf
	297.pdf
	298.pdf
	299.pdf
	300.pdf
	301.pdf
	302.pdf
	303.pdf
	304.pdf
	305.pdf
	306.pdf
	307.pdf
	308.pdf
	309.pdf
	310.pdf
	311.pdf
	312.pdf
	313.pdf
	314.pdf
	315.pdf
	316.pdf
	317.pdf
	318.pdf
	319.pdf
	320.pdf
	321.pdf
	322.pdf
	323.pdf
	324.pdf
	325.pdf
	326.pdf
	327.pdf
	328.pdf
	329.pdf
	330.pdf
	331.pdf
	332.pdf
	333.pdf
	334.pdf
	335.pdf
	336.pdf
	337.pdf
	338.pdf
	339.pdf
	340.pdf
	341.pdf
	342.pdf
	343.pdf
	344.pdf
	345.pdf
	346.pdf
	347.pdf
	348.pdf
	349.pdf
	350.pdf
	351.pdf
	352.pdf
	353.pdf
	354.pdf
	355.pdf
	356.pdf
	357.pdf
	358.pdf
	359.pdf
	360.pdf
	361.pdf
	362.pdf
	363.pdf
	364.pdf
	365.pdf
	366.pdf
	367.pdf
	368.pdf
	369.pdf
	370.pdf
	371.pdf
	372.pdf
	373.pdf
	374.pdf
	375.pdf
	376.pdf
	377.pdf
	378.pdf
	379.pdf
	380.pdf
	381.pdf
	382.pdf
	383.pdf
	384.pdf
	385.pdf
	386.pdf
	387.pdf
	388.pdf
	389.pdf
	390.pdf
	391.pdf
	392.pdf
	393.pdf
	394.pdf
	395.pdf
	396.pdf
	397.pdf
	398.pdf
	399.pdf
	400.pdf
	401.pdf
	402.pdf
	403.pdf
	404.pdf
	405.pdf
	406.pdf
	407.pdf
	408.pdf
	409.pdf
	410.pdf
	411.pdf
	412.pdf
	413.pdf
	414.pdf
	415.pdf
	416.pdf
	417.pdf
	418.pdf
	419.pdf
	420.pdf
	421.pdf
	422.pdf
	423.pdf
	424.pdf
	425.pdf
	426.pdf
	427.pdf
	428.pdf
	429.pdf
	430.pdf
	431.pdf
	432.pdf
	433.pdf
	434.pdf
	435.pdf
	436.pdf
	437.pdf
	438.pdf
	439.pdf
	440.pdf
	441.pdf
	442.pdf
	443.pdf
	444.pdf
	445.pdf
	446.pdf
	447.pdf
	448.pdf

	coa.pdf
	x000.pdf
	x001.pdf
	x002.pdf
	x003.pdf
	x004.pdf
	x005.pdf
	x006.pdf
	x007.pdf
	x008.pdf
	x009.pdf
	x010.pdf
	x011.pdf
	insert.pdf
	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf
	037.pdf
	038.pdf
	039.pdf
	040.pdf
	041.pdf
	042.pdf
	043.pdf
	044.pdf
	045.pdf
	046.pdf
	047.pdf
	048.pdf
	049.pdf
	050.pdf
	051.pdf
	052.pdf
	053.pdf
	054.pdf
	055.pdf
	056.pdf
	057.pdf
	058.pdf
	059.pdf
	060.pdf
	061.pdf
	062.pdf
	063.pdf
	064.pdf
	065.pdf
	066.pdf
	067.pdf
	068.pdf
	069.pdf
	070.pdf
	071.pdf
	072.pdf
	073.pdf
	074.pdf
	075.pdf
	076.pdf
	077.pdf
	078.pdf
	079.pdf
	080.pdf
	081.pdf
	082.pdf
	083.pdf
	084.pdf
	085.pdf
	086.pdf
	087.pdf
	088.pdf
	089.pdf
	090.pdf
	091.pdf
	092.pdf
	093.pdf
	094.pdf
	095.pdf
	096.pdf
	097.pdf
	098.pdf
	099.pdf
	100.pdf
	101.pdf
	102.pdf
	103.pdf
	104.pdf
	105.pdf
	106.pdf
	107.pdf
	108.pdf
	109.pdf
	110.pdf
	111.pdf
	112.pdf
	113.pdf
	114.pdf
	115.pdf
	116.pdf
	117.pdf
	118.pdf
	119.pdf
	120.pdf
	121.pdf
	122.pdf
	123.pdf
	124.pdf
	125.pdf
	126.pdf
	127.pdf
	128.pdf
	129.pdf
	130.pdf
	131.pdf
	132.pdf
	133.pdf
	134.pdf
	135.pdf
	136.pdf
	137.pdf
	138.pdf
	139.pdf
	140.pdf
	141.pdf
	142.pdf
	143.pdf
	144.pdf
	145.pdf
	146.pdf
	147.pdf
	148.pdf
	149.pdf
	150.pdf
	151.pdf
	152.pdf
	153.pdf
	154.pdf
	155.pdf
	156.pdf
	157.pdf
	158.pdf
	159.pdf
	160.pdf
	161.pdf
	162.pdf
	163.pdf
	164.pdf
	165.pdf
	166.pdf
	167.pdf
	168.pdf
	169.pdf
	170.pdf
	171.pdf
	172.pdf
	173.pdf
	174.pdf
	175.pdf
	176.pdf
	177.pdf
	178.pdf
	179.pdf
	180.pdf
	181.pdf
	182.pdf
	183.pdf
	184.pdf
	185.pdf
	186.pdf
	187.pdf
	188.pdf
	189.pdf
	190.pdf
	191.pdf
	192.pdf
	193.pdf
	194.pdf
	195.pdf
	196.pdf
	197.pdf
	198.pdf
	199.pdf
	200.pdf
	201.pdf
	202.pdf
	203.pdf
	204.pdf
	205.pdf
	206.pdf
	207.pdf
	208.pdf
	209.pdf
	210.pdf
	211.pdf
	212.pdf
	213.pdf
	214.pdf
	215.pdf
	216.pdf
	217.pdf
	218.pdf
	219.pdf
	220.pdf
	221.pdf
	222.pdf
	223.pdf
	224.pdf
	225.pdf
	226.pdf
	227.pdf
	228.pdf
	229.pdf
	230.pdf
	231.pdf
	232.pdf
	233.pdf
	234.pdf
	235.pdf
	236.pdf
	237.pdf
	238.pdf
	239.pdf
	240.pdf
	241.pdf
	242.pdf
	243.pdf
	244.pdf
	245.pdf
	246.pdf
	247.pdf
	248.pdf
	249.pdf
	250.pdf
	251.pdf
	252.pdf
	253.pdf
	254.pdf
	255.pdf
	256.pdf
	257.pdf
	258.pdf
	259.pdf
	260.pdf
	261.pdf
	262.pdf
	263.pdf
	264.pdf
	265.pdf
	266.pdf
	267.pdf
	268.pdf
	269.pdf
	270.pdf
	271.pdf
	272.pdf
	273.pdf
	274.pdf
	275.pdf
	276.pdf
	277.pdf
	278.pdf
	279.pdf
	280.pdf
	281.pdf
	282.pdf
	283.pdf
	284.pdf
	285.pdf
	286.pdf
	287.pdf
	288.pdf
	289.pdf
	290.pdf
	291.pdf
	292.pdf
	293.pdf
	294.pdf
	295.pdf
	296.pdf
	297.pdf
	298.pdf
	299.pdf
	300.pdf
	301.pdf
	302.pdf
	303.pdf
	304.pdf
	305.pdf
	306.pdf
	307.pdf
	308.pdf
	309.pdf
	310.pdf
	311.pdf
	312.pdf
	313.pdf
	314.pdf
	315.pdf
	316.pdf
	317.pdf
	318.pdf
	319.pdf
	320.pdf
	321.pdf
	322.pdf
	323.pdf
	324.pdf
	325.pdf
	326.pdf
	327.pdf
	328.pdf
	329.pdf
	330.pdf
	331.pdf
	332.pdf
	333.pdf
	334.pdf
	335.pdf
	336.pdf
	337.pdf
	338.pdf
	339.pdf
	340.pdf
	341.pdf
	342.pdf
	343.pdf
	344.pdf
	345.pdf
	346.pdf
	347.pdf
	348.pdf
	349.pdf
	350.pdf
	351.pdf
	352.pdf
	353.pdf
	354.pdf
	355.pdf
	356.pdf
	357.pdf
	358.pdf
	359.pdf
	360.pdf
	361.pdf
	362.pdf
	363.pdf
	364.pdf
	365.pdf
	366.pdf
	367.pdf
	368.pdf
	369.pdf
	370.pdf
	371.pdf
	372.pdf
	373.pdf
	374.pdf
	375.pdf
	376.pdf
	377.pdf
	378.pdf
	379.pdf
	380.pdf
	381.pdf
	382.pdf
	383.pdf
	384.pdf
	385.pdf
	386.pdf
	387.pdf
	388.pdf
	389.pdf
	390.pdf
	391.pdf
	392.pdf
	393.pdf
	394.pdf
	395.pdf
	396.pdf
	397.pdf
	398.pdf
	399.pdf
	400.pdf
	401.pdf
	402.pdf
	403.pdf
	404.pdf
	405.pdf
	406.pdf
	407.pdf
	408.pdf
	409.pdf
	410.pdf
	411.pdf
	412.pdf
	413.pdf
	414.pdf
	415.pdf
	416.pdf
	417.pdf
	418.pdf
	419.pdf
	420.pdf
	421.pdf
	422.pdf
	423.pdf
	424.pdf
	425.pdf
	426.pdf
	427.pdf
	428.pdf
	429.pdf
	430.pdf
	431.pdf
	432.pdf
	433.pdf
	434.pdf
	435.pdf
	436.pdf
	437.pdf
	438.pdf
	439.pdf
	440.pdf
	441.pdf
	442.pdf
	443.pdf
	444.pdf
	445.pdf
	446.pdf
	447.pdf
	448.pdf





